BOOKS - Data Analytics and Machine Learning for Integrated Corridor Management
Data Analytics and Machine Learning for Integrated Corridor Management - Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
81899

Telegram
 
Data Analytics and Machine Learning for Integrated Corridor Management
Author: Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn
Year: 2025
Format: PDF | EPUB
File size: 33.4 MB
Language: ENG



Pay with Telegram STARS
The book "Data Analytics and Machine Learning for Integrated Corridor Management" is a comprehensive guide that delves into the intricate web of contemporary transportation systems, offering unparalleled insights into the strategies, technologies, and methodologies shaping the movement of people and goods in urban landscapes. As the need for effective transportation management becomes increasingly important in an era defined by rapid urbanization and ever-increasing mobility demands, this book provides readers with the knowledge and tools necessary to navigate the complexities of modern transportation management systems. Chapter by chapter, readers are immersed in the complexities of traffic signal coordination, datadriven decision-making, and the integration of advanced technologies. The book begins with fundamental principles of traffic signal dynamics, providing a solid foundation for understanding the critical aspects of modern transportation management. As readers progress through the chapters, they will discover cutting-edge applications of Machine Learning, including clustering, outlier detection, and neural networks, which have revolutionized data analysis, pattern recognition, and predictive modeling across various domains, including transportation and traffic management.
Книга «Data Analytics and Machine arning for Integrated Corridor Management» (Аналитика данных и машинное обучение для интегрированного управления коридорами) является всеобъемлющим руководством, которое углубляется в сложную сеть современных транспортных систем, предлагая беспрецедентное понимание стратегий, технологий и методологий, формирующих движение людей и товаров в городских ландшафтах. Поскольку потребность в эффективном управлении перевозками становится все более важной в эпоху, определяемую быстрой урбанизацией и постоянно растущими потребностями в мобильности, эта книга предоставляет читателям знания и инструменты, необходимые для навигации по сложностям современных систем управления перевозками. Глава за главой читатели погружаются в сложности координации сигналов дорожного движения, принятия решений на основе данных и интеграции передовых технологий. Книга начинается с фундаментальных принципов динамики сигнала дорожного движения, обеспечивая прочную основу для понимания критических аспектов современного управления перевозками. По мере прохождения глав читатели узнают о передовых приложениях машинного обучения, включая кластеризацию, обнаружение выбросов и нейронные сети, которые произвели революцию в анализе данных, распознавании образов и прогнозном моделировании в различных областях, включая транспорт и управление трафиком.
livre « Data Analytics and Machine Arning for Integrated Corridor Management » (Analyse des données et apprentissage automatique pour la gestion intégrée des corridors) est un guide complet qui s'inscrit dans un réseau complexe de systèmes de transport modernes, offrant une compréhension sans précédent des stratégies, des technologies et des méthodologies qui façonnent la circulation des personnes et des biens dans les paysages urbains. Alors que la nécessité d'une gestion efficace des mouvements devient de plus en plus importante à une époque caractérisée par une urbanisation rapide et des besoins de mobilité toujours croissants, ce livre fournit aux lecteurs les connaissances et les outils nécessaires pour naviguer dans la complexité des systèmes modernes de gestion des mouvements. Chapitre après chapitre, les lecteurs sont plongés dans la complexité de la coordination des signaux routiers, de la prise de décision basée sur les données et de l'intégration des technologies de pointe. livre commence par les principes fondamentaux de la dynamique du signal de circulation, fournissant une base solide pour comprendre les aspects critiques de la gestion moderne des transports. Au fil des chapitres, les lecteurs apprennent les applications avancées de l'apprentissage automatique, y compris le clustering, la détection des émissions et les réseaux neuronaux, qui ont révolutionné l'analyse des données, la reconnaissance des images et la modélisation prédictive dans divers domaines, y compris le transport et la gestion du trafic.
libro «Data Analytics and Machine arning for Integrated Corridor Management» (Análisis de datos y aprendizaje automático para la gestión integrada de corredores) es una guía integral que profundiza en la compleja red de sistemas de transporte modernos, ofreciendo una comprensión sin precedentes de estrategias, tecnologías y metodologías, formando el movimiento de personas y mercancías en los paisajes urbanos. A medida que la necesidad de una gestión eficiente del tráfico cobra cada vez más importancia en una época definida por la rápida urbanización y las crecientes necesidades de movilidad, este libro proporciona a los lectores el conocimiento y las herramientas necesarias para navegar por las complejidades de los sistemas modernos de gestión del tráfico. Capítulo por capítulo, los lectores se sumergen en la dificultad de coordinar las señales de tráfico, tomar decisiones basadas en datos e integrar tecnologías avanzadas. libro comienza con los principios fundamentales de la dinámica de la señal de tráfico, proporcionando una base sólida para entender los aspectos críticos del control de tráfico moderno. A medida que pasan los capítulos, los lectores aprenden sobre aplicaciones avanzadas de aprendizaje automático, incluyendo clustering, detección de emisiones y redes neuronales, que han revolucionado el análisis de datos, reconocimiento de imágenes y simulación predictiva en una variedad de áreas, incluyendo transporte y control de tráfico.
Das Buch „Data Analytics and Machine arning for Integrated Corridor Management“ (Datenanalyse und maschinelles rnen für integriertes Korridormanagement) ist ein umfassender itfaden, der sich in das komplexe Netzwerk moderner Verkehrssysteme vertieft und beispiellose Einblicke in die Strategien, Technologien und Methoden bietet, die den Verkehr von Menschen und Gütern in städtischen Landschaften prägen. Da die Notwendigkeit eines effizienten Transportmanagements in einer Zeit, die von der raschen Urbanisierung und den ständig wachsenden Mobilitätsbedürfnissen geprägt ist, immer wichtiger wird, bietet dieses Buch den sern das Wissen und die Werkzeuge, die sie benötigen, um durch die Komplexität moderner Transportmanagementsysteme zu navigieren. Kapitel für Kapitel tauchen die ser in die Komplexität der Koordination von Verkehrssignalen, der datengetriebenen Entscheidungsfindung und der Integration fortschrittlicher Technologien ein. Das Buch beginnt mit den Grundprinzipien der Verkehrssignaldynamik und bietet eine solide Grundlage für das Verständnis kritischer Aspekte des modernen Transportmanagements. Im Laufe der Kapitel lernen die ser fortschrittliche Anwendungen des maschinellen rnens kennen, darunter Clustering, Emissionserkennung und neuronale Netze, die die Datenanalyse, Mustererkennung und prädiktive Modellierung in verschiedenen Bereichen wie Transport und Verkehrsmanagement revolutioniert haben.
''
"Data Analytics and Machine arning for Integrated Corridor Management" (Entegre Koridor Yönetimi için Veri Analitiği ve Makine Gelişimi) kitabı, modern ulaşım sistemlerinin karmaşık ağını inceleyen ve kentsel manzaralarda insanların ve malların hareketini şekillendiren stratejiler, teknolojiler ve metodolojiler hakkında benzeri görülmemiş bilgiler sunan kapsamlı bir kılavuzdur. Hızlı kentleşme ve sürekli artan mobilite ihtiyaçları ile tanımlanan bir çağda verimli ulaşım yönetimi ihtiyacı giderek daha önemli hale geldiğinden, bu kitap okuyuculara modern ulaşım yönetim sistemlerinin karmaşıklığında gezinmek için ihtiyaç duydukları bilgi ve araçları sağlar. Bölüm bölüm, okuyucular trafik sinyallerini koordine etmenin, veri odaklı kararlar vermenin ve en son teknolojiyi entegre etmenin karmaşıklığına dalıyor. Kitap, modern ulaşım yönetiminin kritik yönlerini anlamak için sağlam bir temel sağlayan trafik sinyal dinamiklerinin temel ilkeleri ile başlar. Bölümler ilerledikçe, okuyucular kümeleme, aykırı algılama ve veri analizi, örüntü tanıma ve ulaşım ve trafik yönetimi de dahil olmak üzere çeşitli alanlarda öngörücü modellemede devrim yaratan sinir ağları dahil olmak üzere gelişmiş makine öğrenme uygulamaları hakkında bilgi edineceklerdir.
تحليلات البيانات والتعلم الآلي للإدارة المتكاملة للممرات هو دليل شامل يتعمق في الشبكة المعقدة لأنظمة النقل الحديثة، ويقدم رؤى لا مثيل لها في الاستراتيجيات والتقنيات والمنهجيات التي تشكل حركة الأشخاص والسلع في المناظر الطبيعية الحضرية. مع تزايد أهمية الحاجة إلى إدارة النقل بكفاءة في عصر يحدده التحضر السريع واحتياجات التنقل المتزايدة باستمرار، يوفر هذا الكتاب للقراء المعرفة والأدوات التي يحتاجونها للتغلب على تعقيدات أنظمة إدارة النقل الحديثة. فصلاً بعد فصل، يغوص القراء في تعقيدات تنسيق إشارات المرور، واتخاذ قرارات تعتمد على البيانات ودمج أحدث التقنيات. يبدأ الكتاب بالمبادئ الأساسية لديناميكيات إشارات المرور، مما يوفر أساسًا صلبًا لفهم الجوانب الحاسمة لإدارة النقل الحديثة. مع تقدم الفصول، سيتعرف القراء على تطبيقات التعلم الآلي المتقدمة بما في ذلك التجميع، والكشف الخارجي، والشبكات العصبية التي أحدثت ثورة في تحليل البيانات، والتعرف على الأنماط، والنمذجة التنبؤية في مجموعة متنوعة من المجالات، بما في ذلك النقل وإدارة حركة المرور.

You may also be interested in:

Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Football Analytics with Python and R: Learning Data Science Through the Lens of Sports
Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Deep Learning for Data Analytics Foundations, Biomedical Applications, and Challenges
Artificial Intelligence Data Analytics and Robot Learning in Practice and Theory
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Advanced Analytics with Spark Patterns for Learning from Data at Scale, 2nd Edition
Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics
Machine Learning with Dynamics 365 and Power Platform The Ultimate Guide to Apply Predictive Analytics
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Data Science on the Google Cloud Platform Implementing End-to-End Real-time Data Pipelines from ingest to machine learning
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Design and Deploy Microsoft Defender for IoT: Leveraging Cloud-based Analytics and Machine Learning Capabilities
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
The Analytics Revolution in Higher Education: Big Data, Organizational Learning, and Student Success
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Health Analytics with R Learning Data Science Using Examples from Healthcare and Direct-to-Consumer Genetics
Training Data for Machine Learning
Data Science and Machine Learning
Machine Learning and Data Mining
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Blueprints for Text Analytics Using Python Machine Learning-Based Solutions for Common Real World (NLP) Applications
Dirty Data Processing for Machine Learning
Machine Learning for Big Data Analysis
Dirty Data Processing for Machine Learning
Encyclopedia of Data Science and Machine Learning
Tkinter, Data Science, And Machine Learning
Data Protection The Wake of AI and Machine Learning
Dirty Data Processing for Machine Learning
Data Analytics Principles, Tools, and Practices A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools