BOOKS - Explainable, Interpretable, and Transparent AI Systems
Explainable, Interpretable, and Transparent AI Systems - B.K. Tripathy, Hari Seetha 2025 PDF CRC Press BOOKS
1 TON

Views
8652

Telegram
 
Explainable, Interpretable, and Transparent AI Systems
Author: B.K. Tripathy, Hari Seetha
Year: 2025
Format: PDF
File size: 29.6 MB
Language: ENG



Pay with Telegram STARS
Book Explainable Interpretable and Transparent AI Systems Introduction: Artificial Intelligence (AI) has become an integral part of our lives, and its impact on society is undeniable. However, the rapid evolution of AI technology has raised concerns about its accountability, fairness, and transparency. The lack of understanding of AI decision-making processes can lead to unintended consequences, making it essential to develop Explainable Artificial Intelligence (XAI) techniques that are accountable, fair, transparent, and trustworthy. This book aims to provide readers with up-to-date information on the latest advancements in XAI, which is a critical requirement for AI/Machine Learning (ML)/Deep Learning (DL) models. Chapter 1: The Need for Explainable AI The rapid growth of AI technology has led to the development of complex models that often remain opaque to users.
Book Explainable Interpretable and Transparent AI Systems Введение: Искусственный интеллект (ИИ) стал неотъемлемой частью нашей жизни, и его влияние на общество неоспоримо. Однако быстрое развитие технологий ИИ вызвало обеспокоенность по поводу их подотчетности, справедливости и прозрачности. Отсутствие понимания процессов принятия решений ИИ может привести к непреднамеренным последствиям, что делает необходимым разработку методов объяснимого искусственного интеллекта (XAI), которые являются подотчетными, справедливыми, прозрачными и заслуживающими доверия. Цель этой книги - предоставить читателям актуальную информацию о последних достижениях в XAI, что является критическим требованием для моделей AI/Machine arning (ML )/Deep arning (DL). Глава 1: Потребность в объяснимом ИИ Быстрый рост технологий ИИ привел к разработке сложных моделей, которые часто остаются непрозрачными для пользователей.
Book Explosible Interpretable and Transparent AI Systems Introduction : L'intelligence artificielle (IA) est devenue une partie intégrante de nos vies et son impact sur la société est indéniable. Toutefois, l'évolution rapide des technologies de l'IA a suscité des inquiétudes quant à leur responsabilité, leur équité et leur transparence. manque de compréhension des processus décisionnels de l'IA peut entraîner des conséquences involontaires, ce qui rend nécessaire le développement de méthodes d'intelligence artificielle intelligente (IAS) responsables, équitables, transparentes et crédibles. L'objectif de ce livre est de fournir aux lecteurs des informations à jour sur les dernières avancées de XAI, une exigence essentielle pour les modèles AI/Machine arning (ML )/Deep arning (DL). Chapitre 1 : La nécessité d'expliquer l'IA La croissance rapide des technologies de l'IA a conduit au développement de modèles complexes qui restent souvent opaques pour les utilisateurs.
Book Explorable Interpretable and Transparent AI Systems Introducción: La inteligencia artificial (IA) se ha convertido en una parte integral de nuestras vidas y su impacto en la sociedad es innegable. n embargo, el rápido desarrollo de las tecnologías de IA ha generado preocupación por su rendición de cuentas, equidad y transparencia. La falta de comprensión de los procesos de toma de decisiones de la IA puede producir consecuencias no deseadas, lo que hace necesario desarrollar técnicas de inteligencia artificial explicable (XAI) que sean responsables, justas, transparentes y creíbles. objetivo de este libro es proporcionar a los lectores información actualizada sobre los últimos avances en XAI, un requisito crítico para los modelos AI/Machine Arning (ML )/Deep Arning (DL). Capítulo 1: Necesidad de una IA explicable rápido crecimiento de las tecnologías de IA ha llevado al desarrollo de modelos complejos que a menudo siguen siendo opacos para los usuarios.
Buch Erklärbare interpretierbare und transparente KI-Systeme Einführung: Künstliche Intelligenz (KI) ist zu einem festen Bestandteil unseres bens geworden und ihre Auswirkungen auf die Gesellschaft sind unbestreitbar. Die rasante Entwicklung von KI-Technologien hat jedoch Bedenken hinsichtlich ihrer Rechenschaftspflicht, Fairness und Transparenz aufgeworfen. Ein mangelndes Verständnis der Entscheidungsprozesse von KI kann zu unbeabsichtigten Konsequenzen führen, was die Entwicklung von erklärbaren Methoden der künstlichen Intelligenz (XAI) erforderlich macht, die rechenschaftspflichtig, fair, transparent und vertrauenswürdig sind. Das Ziel dieses Buches ist es, den sern aktuelle Informationen über die neuesten Fortschritte in XAI zur Verfügung zu stellen, was eine kritische Voraussetzung für AI/Machine arning (ML )/Deep arning (DL) Modelle ist. Kapitel 1: Der Bedarf an erklärbarer KI Das rasante Wachstum von KI-Technologien hat zur Entwicklung komplexer Modelle geführt, die für die Nutzer oft undurchsichtig bleiben.
''
Açıklanabilir Yorumlanabilir ve Şeffaf AI stemleri Giriş: Yapay zeka (AI) hayatımızın ayrılmaz bir parçası haline geldi ve toplum üzerindeki etkisi yadsınamaz. Bununla birlikte, AI teknolojilerinin hızlı gelişimi, hesap verebilirlik, adalet ve şeffaflık konusunda endişelere yol açmıştır. AI karar verme süreçlerinin anlaşılmaması, istenmeyen sonuçlara yol açabilir; bu da, hesap verebilir, adil, şeffaf ve güvenilir olan açıklanabilir yapay zeka (XAI) tekniklerinin geliştirilmesini gerekli kılar. Bu kitabın amacı, okuyuculara, AI/Machine arning (ML )/Deep arning (DL) modelleri için kritik bir gereklilik olan XAI'daki en son gelişmeler hakkında güncel bilgiler sağlamaktır. Bölüm 1: Açıklanabilir AI İhtiyacı YZ teknolojilerinin hızlı büyümesi, kullanıcılara genellikle opak kalan karmaşık modellerin geliştirilmesine yol açmıştır.
كتاب قابل للتفسير وشفاف أنظمة الذكاء الاصطناعي المقدمة: أصبح الذكاء الاصطناعي (AI) جزءًا لا يتجزأ من حياتنا، ولا يمكن إنكار تأثيره على المجتمع. ومع ذلك، أثار التطور السريع لتقنيات الذكاء الاصطناعي مخاوف بشأن مساءلتها وإنصافها وشفافيتها. يمكن أن يؤدي الافتقار إلى فهم عمليات صنع القرار في الذكاء الاصطناعي إلى عواقب غير مقصودة، مما يجعل من الضروري تطوير تقنيات ذكاء اصطناعي يمكن تفسيرها (XAI) تكون خاضعة للمساءلة وعادلة وشفافة وجديرة بالثقة. الغرض من هذا الكتاب هو تزويد القراء بمعلومات محدثة عن أحدث التطورات في XAI، وهو مطلب حاسم لنماذج الذكاء الاصطناعي/التعلم الآلي (ML )/التعلم العميق (DL). الفصل 1: الحاجة إلى الذكاء الاصطناعي القابل للتفسير أدى النمو السريع لتقنيات الذكاء الاصطناعي إلى تطوير نماذج معقدة غالبًا ما تظل غامضة للمستخدمين.

You may also be interested in:

Computer Systems and Networking for Beginners: Advanced Strategies and Techniques in Computer Systems and Networking for Optimal Efficiency and Scalability
Information Systems Foundations: Theory Building in Information Systems
Agent and Multi-Agent Systems: Technology and Applications: 10th KES International Conference, KES-AMSTA 2016 Puerto de la Cruz, Tenerife, Spain, June … Innovation, Systems and Technologies, 58)
Systems, Decision and Control in Energy IV: Volume I?. Nuclear and Environmental Safety (Studies in Systems, Decision and Control)
Emerging Trends in Intelligent and Interactive Systems and Applications: Proceedings of the 5th International Conference on Intelligent, Interactive … in Intelligent Systems and Computing, 1304)
Communications, Signal Processing, and Systems: Proceedings of the 11th International Conference on Communications, Signal Processing, and Systems, Vol. … Notes in Electrical Engineering Book 87
Introduction to Civil Engineering Systems A Systems Perspective to the Development of Civil Engineering Facilities
Enterprise Process Management Systems Engineering Process-Centric Enterprise Systems using BPMN 2.0
Agents and Multi-agent Systems: Technologies and Applications 2023: Proceedings of 17th KES International Conference, KES-AMSTA 2023, June 2023 (Smart Innovation, Systems and Technologies, 354)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Fog Computing for Intelligent Cloud IoT Systems (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
Artificial Intelligence and Internet of Things based Augmented Trends for Data Driven Systems (Intelligent Data-Driven Systems and Artificial Intelligence)
Principles of Blockchain Systems<!--TBeginhttps//mirknig.su/uploads/posts/2021-09/1632818074_principles-of-blockchain-systems.jpg|left--><a href="https//mirknig.su/uploads/posts/2021-09/1632818074_pri
Machine Vision Inspection Systems Machine Learning-Based Approaches (Machine Vision Inspection Systems, Volume 2)
Other Systems
Systems
Hypermedia Systems
Living Systems
BAE Systems
Signals and Systems
Signals and Systems
Technologies for RF Systems
Art Systems
Computer Systems
Planetary Systems Now
APIN Systems
Planetary Systems Now
Signals and Systems
A Systems Biology
M Information Systems
Electromechanical Systems
Components and Systems
Integrable Systems
Residential Systems
Systems and Software Process
Patterns of Distributed Systems
Signals and Systems: Fundamentals
Advanced Database Systems