BOOKS - Data Analytics and Machine Learning for Integrated Corridor Management
Data Analytics and Machine Learning for Integrated Corridor Management - Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
70935

Telegram
 
Data Analytics and Machine Learning for Integrated Corridor Management
Author: Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn
Year: 2025
Format: PDF | EPUB
File size: 33.4 MB
Language: ENG



Pay with Telegram STARS
The book "Data Analytics and Machine Learning for Integrated Corridor Management" explores the potential of data analytics and machine learning in integrated corridor management, highlighting the importance of these technologies in optimizing transportation infrastructure planning, design, operation, and maintenance. The book provides insights into how data analytics and machine learning can be applied to various transportation modes, including roads, railways, airports, seaports, and public transportation systems. It covers topics such as data-driven decision-making, predictive modeling, and intelligent transportation systems, and offers practical examples of successful applications of these technologies in different regions of the world. The book begins by discussing the evolution of technology and its impact on society, emphasizing the need for a personal paradigm shift in understanding the technological process of developing modern knowledge. This shift involves recognizing the interconnectedness of technology and society and the imperative of adapting to new technologies to ensure human survival and the unification of people in a warring state. The author argues that this shift is necessary to overcome the challenges posed by the rapid pace of technological change and the increasing complexity of modern life. The book then delves into the specifics of data analytics and machine learning, explaining their potential to transform integrated corridor management. It explores the use of data analytics in traffic flow prediction, route optimization, and traveler information systems, as well as the application of machine learning algorithms to improve traffic management and reduce congestion. The author highlights the importance of integrating data analytics and machine learning into existing transportation infrastructure and operations, emphasizing the need for a comprehensive approach to managing corridors that considers all modes of transportation.
Книга «Data Analytics and Machine arning for Integrated Corridor Management» исследует потенциал аналитики данных и машинного обучения в интегрированном управлении коридорами, подчеркивая важность этих технологий в оптимизации планирования, проектирования, эксплуатации и обслуживания транспортной инфраструктуры. Книга дает представление о том, как аналитика данных и машинное обучение могут быть применены к различным видам транспорта, включая автомобильные дороги, железные дороги, аэропорты, морские порты и системы общественного транспорта. Он охватывает такие темы, как принятие решений на основе данных, прогнозное моделирование и интеллектуальные транспортные системы, и предлагает практические примеры успешного применения этих технологий в разных регионах мира. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчёркивая необходимость личностной смены парадигмы в понимании технологического процесса развития современных знаний. Этот сдвиг предполагает признание взаимосвязанности технологий и общества и императива адаптации к новым технологиям для обеспечения выживания человека и объединения людей в воюющем государстве. Автор утверждает, что этот сдвиг необходим для преодоления проблем, связанных с быстрыми темпами технологических изменений и возрастающей сложностью современной жизни. Затем книга углубляется в особенности аналитики данных и машинного обучения, объясняя их потенциал для трансформации интегрированного управления коридорами. В нем исследуется использование аналитики данных в прогнозировании потоков трафика, оптимизации маршрутов и информационных системах путешественников, а также применение алгоритмов машинного обучения для улучшения управления трафиком и уменьшения заторов. Автор подчеркивает важность интеграции аналитики данных и машинного обучения в существующую транспортную инфраструктуру и операции, подчеркивая необходимость комплексного подхода к управлению коридорами, учитывающего все виды транспорта.
''

You may also be interested in:

Practical Machine Learning for Data Analysis Using Python
Demystifying Big Data and Machine Learning for Healthcare
Machine Learning Concepts, Tools And Data Visualization
Big Data and Machine Learning in Quantitative Investment
Introduction to Algorithms for Data Mining and Machine Learning
Mathematical Analysis for Machine Learning and Data Mining
Machine Learning and Data Science Fundamentals and Applications
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Learning Tableau 2020: Create Effective Data Visualizations, Build Interactive Visual Analytics, and Transform Your Organization
Machine Learning and Big Data with kdb+ q (Wiley Finance)
Blockchain, Big Data and Machine Learning Trends and Applications
Data Science and Machine Learning Applications in Subsurface Engineering
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Data Science and Machine Learning Applications in Subsurface Engineering
Just Enough Data Science and Machine Learning Essential Tools and Techniques
Big Data, IoT, and Machine Learning Tools and Applications
Data Science and Machine Learning Applications in Subsurface Engineering
Text as Data: A New Framework for Machine Learning and the Social Sciences
Machine Learning and Data Mining Annual Volume 2023
Data Science with Machine Learning Python Interview Questions
Scaling Python with Dask: From Data Science to Machine Learning
Machine Learning and Data Mining Annual Volume 2023
Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Introduction to Statistical and Machine Learning Methods for Data Science
Handbook of Research on Big Data Clustering and Machine Learning
Practicable Learning Analytics (Advances in Analytics for Learning and Teaching)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Information-Driven Machine Learning Data Science as an Engineering Discipline
Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner