BOOKS - Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale
Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale - Daniel Abadi, Andrew Mott 2024-07-03 PDF | EPUB | MOBI O’Reilly Media, Inc. BOOKS
1 TON

Views
91629

Telegram
 
Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale
Author: Daniel Abadi, Andrew Mott
Year: 2024-07-03
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale In this book, we explore the concept of data virtualization and its role in the cloud era, where data lakes and data federations at scale are becoming increasingly important. We examine the challenges and opportunities presented by these technologies and discuss how they can be used to create a more efficient and effective approach to data management. The book begins by discussing the current state of data management and the limitations of traditional approaches. We then delve into the concept of data virtualization and its potential benefits, including improved data quality, increased efficiency, and better decision-making capabilities. Next, we examine the role of cloud computing in data virtualization and how it enables the creation of large-scale data lakes and data federations. We also discuss the importance of data governance and security in the cloud era and how these technologies can be used to ensure data privacy and compliance. The book then explores the use cases for data virtualization in various industries, such as healthcare, finance, and retail, highlighting the potential for cost savings, improved customer experiences, and competitive advantages. We also discuss the future of data virtualization and how it is likely to continue to evolve in the coming years. Finally, we conclude with a discussion on the need for a personal paradigm for perceiving the technological process of developing modern knowledge, and how this can help us navigate the complex and rapidly changing world of technology.
Виртуализация данных в эпоху облачных вычислений Озера данных и объединение данных в масштабе В этой книге мы исследуем концепцию виртуализации данных и ее роль в эпоху облачных вычислений, когда озера данных и объединения данных в масштабе приобретают все большее значение. Мы изучаем проблемы и возможности, предоставляемые этими технологиями, и обсуждаем, как их можно использовать для создания более эффективного и действенного подхода к управлению данными. Книга начинается с обсуждения текущего состояния управления данными и ограничений традиционных подходов. Затем мы углубились в концепцию виртуализации данных и ее потенциальные преимущества, включая улучшение качества данных, повышение эффективности и улучшение возможностей принятия решений. Далее мы рассмотрим роль облачных вычислений в виртуализации данных и то, как они позволяют создавать крупномасштабные «озера» данных и федерации данных. Мы также обсуждаем важность управления и безопасности данных в эпоху облачных вычислений и то, как эти технологии можно использовать для обеспечения конфиденциальности и соответствия требованиям регулирования. Затем книга исследует сценарии использования виртуализации данных в различных отраслях, таких как здравоохранение, финансы и розничная торговля, подчеркивая потенциал экономии средств, улучшения качества обслуживания клиентов и конкурентных преимуществ. Мы также обсуждаем будущее виртуализации данных и то, как она, вероятно, продолжит развиваться в ближайшие годы. Наконец, завершаем дискуссией о необходимости личностной парадигмы восприятия технологического процесса развития современных знаний, и о том, как это может помочь нам ориентироваться в сложном и быстро меняющемся мире технологий.
''

You may also be interested in:

The Future of Metaverse in the Virtual Era and Physical World (Studies in Big Data Book 123)
Learn Microsoft Fabric: A practical guide to performing data analytics in the era of artificial intelligence
Architecting Data and Machine Learning Platforms: Enable Analytics and AI-Driven Innovation in the Cloud
Cloud-Native Data Center Networking Architecture, Protocols, and Tools (Early Release)
Industry 4.0 Convergence with AI, IoT, Big Data and Cloud Computing Fundamentals, Challenges and Applications
Industry 4.0 Convergence with AI, IoT, Big Data and Cloud Computing Fundamentals, Challenges and Applications
Cloud Native Data Center Networking Architecture, Protocols, and Tools, 1st Edition
Advanced Data Management: For SQL, NoSQL, Cloud and Distributed Databases (De Gruyter Textbook)
Oracle Enterprise Manager Cloud Control 12c: Managing Data Center Chaos
Amazon Redshift The Definitive Guide Jump-Start Analytics Using Cloud Data Warehousing
Mastering the Snowflake SQL API with Laravel 10 A Comprehensive Guide to Data Cloud Integrated Development
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Smart Cities IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
LTE Cellular Narrowband Internet of Things (NB-IoT) Practical Projects for the Cloud and Data Visualization
Smart Cities IoT Technologies, Big Data Solutions, Cloud Platforms, and Cybersecurity Techniques
Big Data and Cloud Computing for Development Lessons from Key Industries and Economies in the Global South
Advances in Digital Marketing in the Era of Artificial Intelligence Case Studies and Data Analysis for Business Problem Solving
Advances in Digital Marketing in the Era of Artificial Intelligence Case Studies and Data Analysis for Business Problem Solving
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)
3D Data Science with Python Building Accurate Digital Environments with 3D Point Cloud Workflows (Early Release)
Cloud Computing Demystified for Aspiring Professionals: Hone your skills in AWS, Azure, and Google cloud computing and boost your career as a cloud engineer
Cloud Native Java Designing Resilient Systems with Spring Boot, Spring Cloud, and Cloud Foundry
Big Data and Cloud Computing: Select Proceedings of ICBCC 2022 (Lecture Notes in Electrical Engineering Book 1021)
Snowflake The Definitive Guide Architecting, Designing, and Deploying on the Snowflake Data Cloud
Mastering Azure Analytics Architecting in the Cloud with Azure Data Lake, HDInsight, and Spark
Cost-Effective Data Pipelines: Balancing Trade-Offs When Developing Pipelines in the Cloud
Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms
Maturing the Snowflake Data Cloud: A Templated Approach to Delivering and Governing Snowflake in Large Enterprises
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Cost-Effective Data Pipelines Balancing Trade-Offs When Developing Pipelines in the Cloud (Final Release)
The Definitive Guide to Azure Data Engineering: Modern ELT, DevOps, and Analytics on the Azure Cloud Platform
Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks (Wireless Communications and Networking Technologies)
Persistence Best Practices for Java Applications: Effective strategies for distributed cloud-native applications and data-driven modernization
Cloud Native Development with Azure: A practical guide to build cloud-native apps on Azure cloud platform (English Edition)
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Cloud Native Development with Azure A practical guide to build cloud-native apps on Azure cloud platform
Cloud Native Development with Azure A practical guide to build cloud-native apps on Azure cloud platform
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python