BOOKS - Machine Learning and Cryptographic Solutions for Data Protection and Network ...
Machine Learning and Cryptographic Solutions for Data Protection and Network Security - J. Anitha Ruth, Vijayalakshmi G.V. Mahesh, P. Visalakshi, R. Uma, A. Meenakshi 2024 PDF | EPUB IGI Global BOOKS
2 TON

Views
73873

Telegram
 
Machine Learning and Cryptographic Solutions for Data Protection and Network Security
Author: J. Anitha Ruth, Vijayalakshmi G.V. Mahesh, P. Visalakshi, R. Uma, A. Meenakshi
Year: 2024
Format: PDF | EPUB
File size: 46.2 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning and Cryptographic Solutions for Data Protection and Network Security" explores the intersection of machine learning and cryptography in protecting data and securing networks. The authors examine the current state of technology and how it has evolved over time, highlighting the need for a personal paradigm that can help us better understand the rapid pace of innovation and its impact on society. They argue that by studying and understanding this process, we can ensure the survival of humanity and the unity of people in a world filled with conflict. The book begins by discussing the importance of machine learning and cryptography in today's digital age, where vast amounts of data are being generated at an unprecedented rate. With the rise of artificial intelligence (AI) and automation, traditional security measures are no longer sufficient to protect against cyber threats. The authors emphasize the need for a more comprehensive approach that combines machine learning and cryptography to safeguard sensitive information and prevent attacks. The first chapter delves into the basics of machine learning and its applications in various industries, including healthcare, finance, and e-commerce. It also covers the different types of machine learning algorithms and their strengths and weaknesses, providing readers with a solid foundation for understanding the rest of the book. Chapter 2 explores the role of cryptography in data protection, discussing encryption techniques and their significance in securing online transactions. The authors explain how cryptography has evolved over time, from simple substitution and transposition techniques to advanced public-key cryptography, highlighting the challenges and opportunities presented by each development.
В книге «Машинное обучение и криптографические решения для защиты данных и сетевой безопасности» (Machine arning and Cryptographic Solutions for Data Protection and Network Security) рассматривается пересечение машинного обучения и криптографии при защите данных и обеспечении безопасности сетей. Авторы изучают текущее состояние технологий и то, как они развивались с течением времени, подчеркивая необходимость личной парадигмы, которая может помочь нам лучше понять быстрые темпы инноваций и их влияние на общество. Они утверждают, что, изучая и понимая этот процесс, мы можем обеспечить выживание человечества и единство людей в мире, наполненном конфликтами. Книга начинается с обсуждения важности машинного обучения и криптографии в современную цифровую эпоху, когда огромные объемы данных генерируются с беспрецедентной скоростью. С появлением искусственного интеллекта (ИИ) и автоматизации традиционных мер безопасности уже недостаточно для защиты от киберугроз. Авторы подчеркивают необходимость более комплексного подхода, сочетающего машинное обучение и криптографию для защиты конфиденциальной информации и предотвращения атак. Первая глава углубляется в основы машинного обучения и его применения в различных отраслях, включая здравоохранение, финансы и электронную коммерцию. Он также охватывает различные типы алгоритмов машинного обучения и их сильные и слабые стороны, предоставляя читателям прочную основу для понимания остальной части книги. В главе 2 рассматривается роль криптографии в защите данных, обсуждаются методы шифрования и их значение в обеспечении безопасности онлайн-транзакций. Авторы объясняют, как криптография развивалась с течением времени, от простых методов подстановки и транспозиции до продвинутой криптографии с открытым ключом, подчеркивая проблемы и возможности, предоставляемые каждой разработкой.
''

You may also be interested in:

Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Solutions Architect|s Handbook: Kick-start your solutions architect career by learning architecture design principles and strategies
Machine Learning in Trading: Step by step implementation of Machine Learning models
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Learning TensorFlow.js Powerful Machine Learning in javascript