BOOKS - Machine Learning and Cryptographic Solutions for Data Protection and Network ...
Machine Learning and Cryptographic Solutions for Data Protection and Network Security - J. Anitha Ruth, Vijayalakshmi G.V. Mahesh, P. Visalakshi, R. Uma, A. Meenakshi 2024 PDF | EPUB IGI Global BOOKS
Stars49 Stars 2 TON

Views
73876

Telegram
 
Machine Learning and Cryptographic Solutions for Data Protection and Network Security
Author: J. Anitha Ruth, Vijayalakshmi G.V. Mahesh, P. Visalakshi, R. Uma, A. Meenakshi
Year: 2024
Format: PDF | EPUB
File size: 46.2 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning and Cryptographic Solutions for Data Protection and Network Security" explores the intersection of machine learning and cryptography in protecting data and securing networks. The authors examine the current state of technology and how it has evolved over time, highlighting the need for a personal paradigm that can help us better understand the rapid pace of innovation and its impact on society. They argue that by studying and understanding this process, we can ensure the survival of humanity and the unity of people in a world filled with conflict. The book begins by discussing the importance of machine learning and cryptography in today's digital age, where vast amounts of data are being generated at an unprecedented rate. With the rise of artificial intelligence (AI) and automation, traditional security measures are no longer sufficient to protect against cyber threats. The authors emphasize the need for a more comprehensive approach that combines machine learning and cryptography to safeguard sensitive information and prevent attacks. The first chapter delves into the basics of machine learning and its applications in various industries, including healthcare, finance, and e-commerce. It also covers the different types of machine learning algorithms and their strengths and weaknesses, providing readers with a solid foundation for understanding the rest of the book. Chapter 2 explores the role of cryptography in data protection, discussing encryption techniques and their significance in securing online transactions. The authors explain how cryptography has evolved over time, from simple substitution and transposition techniques to advanced public-key cryptography, highlighting the challenges and opportunities presented by each development.
В книге «Машинное обучение и криптографические решения для защиты данных и сетевой безопасности» (Machine arning and Cryptographic Solutions for Data Protection and Network Security) рассматривается пересечение машинного обучения и криптографии при защите данных и обеспечении безопасности сетей. Авторы изучают текущее состояние технологий и то, как они развивались с течением времени, подчеркивая необходимость личной парадигмы, которая может помочь нам лучше понять быстрые темпы инноваций и их влияние на общество. Они утверждают, что, изучая и понимая этот процесс, мы можем обеспечить выживание человечества и единство людей в мире, наполненном конфликтами. Книга начинается с обсуждения важности машинного обучения и криптографии в современную цифровую эпоху, когда огромные объемы данных генерируются с беспрецедентной скоростью. С появлением искусственного интеллекта (ИИ) и автоматизации традиционных мер безопасности уже недостаточно для защиты от киберугроз. Авторы подчеркивают необходимость более комплексного подхода, сочетающего машинное обучение и криптографию для защиты конфиденциальной информации и предотвращения атак. Первая глава углубляется в основы машинного обучения и его применения в различных отраслях, включая здравоохранение, финансы и электронную коммерцию. Он также охватывает различные типы алгоритмов машинного обучения и их сильные и слабые стороны, предоставляя читателям прочную основу для понимания остальной части книги. В главе 2 рассматривается роль криптографии в защите данных, обсуждаются методы шифрования и их значение в обеспечении безопасности онлайн-транзакций. Авторы объясняют, как криптография развивалась с течением времени, от простых методов подстановки и транспозиции до продвинутой криптографии с открытым ключом, подчеркивая проблемы и возможности, предоставляемые каждой разработкой.
''

You may also be interested in:

Human-in-the-Loop Machine Learning Active learning, annotation and human-computer interaction (MEAP)
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
From Machine Learning To Deep Learning
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Grokking Algorithms Simple and Effective Methods to Grokking Deep Learning and Machine Learning
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Machine Vision Inspection Systems Machine Learning-Based Approaches (Machine Vision Inspection Systems, Volume 2)
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Learn Autonomous Programming with Python: Utilize Python|s capabilities in artificial intelligence, machine learning, deep learning and robotic process automation (English Edition)
Supervised Machine Learning with Python: A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Learning Apache OpenWhisk Developing Open Serverless Solutions
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle computer vision and machine learning with the newest tools, techniques and algorithms
Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Machine Learning
Machine Learning The New AI
Machine Learning: The New AI
MACHINE LEARNING
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
A First Course in Machine Learning, Second Edition
Machine Learning with Python
Machine Learning for Engineers
Grokking Machine Learning
Practical Machine Learning in R
Mathematics of Machine Learning
Machine Learning With Python
Machine Learning for Text
Machine Learning with Python
Machine Learning in Python
Machine Learning in Python for Everyone