BOOKS - Microservices for Machine Learning Design, implement, and manage high-perform...
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices - Rohit Ranjan 2024 PDF | EPUB | MOBI BPB Publications BOOKS
3 TON

Views
87018

Telegram
 
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Author: Rohit Ranjan
Year: 2024
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Designing and managing high-performance machine learning (ML) systems is a complex task that requires a deep understanding of various technologies and their interplay. The book "Microservices for Machine Learning" provides a comprehensive guide to designing, implementing, and managing such systems using microservices architecture. This approach allows for breaking down the overall system into smaller, independent components, each responsible for a specific task, making it easier to maintain, scale, and evolve over time. The book covers the entire lifecycle of an ML system, from conceptualization to deployment and maintenance, and provides practical advice on how to navigate the rapidly changing landscape of ML technology. It emphasizes the importance of understanding the underlying principles of ML and the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book is divided into four parts: Part I provides an overview of ML systems and their importance in today's technology landscape, while Part II delves into the details of designing and implementing microservices for ML. Part III discusses the challenges of deploying and maintaining ML systems in production environments, and Part IV offers guidance on how to evolve and adapt to new technologies and trends.
Проектирование и управление высокопроизводительными системами машинного обучения (ML) является сложной задачей, требующей глубокого понимания различных технологий и их взаимодействия. Книга «Микросервисы для машинного обучения» содержит исчерпывающее руководство по проектированию, внедрению и управлению такими системами с использованием архитектуры микросервисов. Такой подход позволяет разбивать всю систему на более мелкие, независимые компоненты, каждый из которых отвечает за конкретную задачу, что облегчает ее обслуживание, масштабирование и развитие с течением времени. Книга охватывает весь жизненный цикл ML-системы, от концептуализации до развертывания и обслуживания, и содержит практические советы о том, как ориентироваться в быстро меняющейся среде ML-технологии. В ней подчеркивается важность понимания основополагающих принципов МИ и необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга разделена на четыре части: в части I представлен обзор ML-систем и их важности в современном технологическом ландшафте, а в части II - подробности проектирования и внедрения микросервисов для ML. В части III обсуждаются проблемы развертывания и обслуживания ML-систем в производственных средах, а в части IV предлагаются рекомендации по развитию и адаптации к новым технологиям и тенденциям.
''

You may also be interested in:

Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
How to Design, Implement and Analyse a Survey (How to Research Guides)
Machine Learning in Trading: Step by step implementation of Machine Learning models
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Programming-Based Formal Languages and Automata Theory Design, Implement, Validate, and Prove
Programming-Based Formal Languages and Automata Theory Design, Implement, Validate, and Prove
Domain-Driven Design And Microservices Explained with Examples
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples