BOOKS - Applied Machine Learning: A practical guide from Novice to Pro.
Applied Machine Learning: A practical guide from Novice to Pro. - Chigozie Anyasor July 4, 2024 PDF  BOOKS
3 TON

Views
3664

Telegram
 
Applied Machine Learning: A practical guide from Novice to Pro.
Author: Chigozie Anyasor
Year: July 4, 2024
Format: PDF
File size: PDF 24 MB
Language: English



Pay with Telegram STARS
Applied Machine Learning: A Practical Guide from Novice to Pro Introduction: Machine learning (ML) has become an integral part of our daily lives, from virtual assistants to self-driving cars. However, many people still believe that ML models can act autonomously, which hinders innovation in the field of artificial intelligence (AI). This misconception has led to a lack of understanding of the true potential of ML and its practical applications. In reality, ML models require integration within a comprehensive system encompassing inputs, processing, and outputs. This book, "Applied Machine Learning: A Practical Guide from Novice to Pro aims to reshape your understanding of ML and its practical applications.
Прикладное машинное обучение: практическое руководство от новичка до Pro Введение: Машинное обучение (ML) стало неотъемлемой частью нашей повседневной жизни, от виртуальных помощников до самоуправляемых автомобилей. Однако многие по-прежнему считают, что ML-модели могут действовать автономно, что препятствует инновациям в области искусственного интеллекта (ИИ). Это заблуждение привело к непониманию истинного потенциала ML и его практического применения. В действительности, модели ML требуют интеграции в рамках комплексной системы, охватывающей входы, обработку и выходы. Эта книга «Прикладное машинное обучение: практическое руководство от новичка до профессионала» призвана изменить ваше понимание ML и его практических применений.
Machine Machine arning appliquée : guide pratique du débutant à Pro Introduction : Machine arning (ML) est devenu une partie intégrante de notre vie quotidienne, des assistants virtuels aux voitures autonomes. Cependant, beaucoup pensent encore que les modèles ML peuvent agir de manière autonome, ce qui entrave l'innovation dans le domaine de l'intelligence artificielle (IA). Cette illusion a conduit à une incompréhension du véritable potentiel du ML et de son application pratique. En réalité, les modèles ML nécessitent une intégration au sein d'un système complexe couvrant les entrées, le traitement et les sorties. Ce livre, « L'apprentissage machine appliqué : un guide pratique d'un débutant à un professionnel », est conçu pour changer votre compréhension de ML et de ses applications pratiques.
Aprendizaje automático aplicado: guía práctica de principiante a pro Introducción: aprendizaje automático (ML) se ha convertido en una parte integral de nuestra vida cotidiana, desde asistentes virtuales hasta autos autogestionados. n embargo, muchos todavía creen que los modelos ML pueden actuar de forma autónoma, lo que impide la innovación en inteligencia artificial (IA). Esta idea errónea llevó a una incomprensión del verdadero potencial del LM y su aplicación práctica. En realidad, los modelos ML requieren una integración dentro de un sistema integral que abarque las entradas, el procesamiento y las salidas. Este libro, «Machine arning: una guía práctica de principiante a profesional», está diseñado para cambiar su comprensión del ML y sus aplicaciones prácticas.
Aprendizagem de máquina aplicada: guia prático de novato a Pro Introdução: Aprendizado de máquina (ML) tornou-se parte integrante da nossa vida diária, desde assistentes virtuais até carros autônomos. No entanto, muitos ainda acreditam que os modelos ML podem funcionar de forma autônoma, o que impede a inovação da inteligência artificial (IA). Este equívoco levou à incompreensão do verdadeiro potencial do ML e sua aplicação prática. Na verdade, os modelos ML exigem integração dentro de um sistema integrado que abrange entradas, processamento e saídas. Este livro «Aprendizagem de Máquina Aplicada: Guia Prático de Iniciante a Profissional» tem como objetivo alterar a sua compreensão do ML e suas aplicações práticas.
Apprendimento automatico applicato: manuale pratico da principiante a Pro Introduzione: Apprendimento automatico (ML) è diventato parte integrante della nostra vita quotidiana, dagli assistenti virtuali alle auto autosufficienti. Ma molti continuano a pensare che i modelli ML possano agire autonomamente, ostacolando l'innovazione dell'intelligenza artificiale (IA). Questo inganno ha portato a un'incomprensione del vero potenziale di ML e della sua applicazione pratica. In realtà, i modelli ML richiedono l'integrazione all'interno di un sistema completo che comprende ingressi, elaborazioni e uscite. Questo libro «Apprendimento automatico applicato: manuale pratico da principiante a professionista» è progettato per cambiare la vostra comprensione di ML e delle sue applicazioni pratiche.
Applied Machine arning: Ein praktischer itfaden vom Anfänger bis zum Profi Einführung: Machine arning (ML) ist aus unserem Alltag nicht mehr wegzudenken, vom virtuellen Assistenten bis zum selbstfahrenden Auto. Viele glauben jedoch immer noch, dass ML-Modelle autonom agieren können, was Innovationen im Bereich der künstlichen Intelligenz (KI) behindert. Dieses Missverständnis führte zu einem Missverständnis des wahren Potenzials von ML und seiner praktischen Anwendung. In Wirklichkeit erfordern ML-Modelle eine Integration innerhalb eines umfassenden Systems, das Ein-, Verarbeitungs- und Ausgänge umfasst. Dieses Buch, Applied Machine arning: Ein praktischer itfaden vom Anfänger bis zum Profi, soll Ihr Verständnis von ML und seinen praktischen Anwendungen verändern.
Applied Machine arning: Praktyczny przewodnik od początkującego do Pro Wprowadzenie: Uczenie maszynowe (ML) stało się integralną częścią naszego codziennego życia, od wirtualnych asystentów po samochody samojezdne. Jednak wielu nadal uważa, że modele ML mogą działać autonomicznie, utrudniając innowacje w sztucznej inteligencji (AI). Błędne przekonanie doprowadziło do braku zrozumienia prawdziwego potencjału ML i jego praktycznego zastosowania. W rzeczywistości modele ML wymagają integracji w złożonym systemie obejmującym wejścia, przetwarzanie i wyjścia. Ta książka, Applied Machine arning: Praktyczny przewodnik od początkującego do profesjonalnego, ma na celu przekształcenie zrozumienia ML i jego praktycznych zastosowań.
למידת מכונה שימושית: מדריך מעשי ממתחילים למבוא פרו: למידת מכונה (ML) הפכה לחלק בלתי נפרד מחיי היומיום שלנו, מעוזרים וירטואליים למכוניות שנוהגות בעצמן. עם זאת, רבים עדיין מאמינים שמודלים של ML יכולים לפעול באופן עצמאי, מה שמפריע לחדשנות בבינה מלאכותית (AI). תפיסה מוטעית זו הובילה לחוסר הבנה של הפוטנציאל האמיתי של ML ושל היישום המעשי שלה. למעשה, מודלי ML דורשים אינטגרציה בתוך מערכת מורכבת המכסה קלט, עיבוד ותפוקות. ספר זה, Applied Machine arning: A Practical Guide from Beginner to Professional, שואף לשנות את הבנתך על ML ועל יישומיו המעשיים.''
Uygulamalı Makine Öğrenimi: Başlangıçtan Pro'ya Pratik Bir Rehber Giriş: Makine öğrenimi (ML), sanal asistanlardan kendi kendini süren arabalara kadar günlük hayatımızın ayrılmaz bir parçası haline geldi. Bununla birlikte, birçoğu hala ML modellerinin otonom olarak çalışabileceğine ve yapay zekada (AI) inovasyonu engelleyebileceğine inanıyor. Bu yanlış anlama, ML'nin gerçek potansiyelinin ve pratik uygulamasının anlaşılmamasına yol açtı. Aslında, ML modelleri, girişleri, işlemleri ve çıktıları kapsayan karmaşık bir sistem içinde entegrasyon gerektirir. Bu kitap, Uygulamalı Makine Öğrenimi: Başlangıçtan Profesyonelliğe Pratik Bir Rehber, ML ve pratik uygulamaları hakkındaki anlayışınızı dönüştürmeyi amaçlamaktadır.
التعلم الآلي التطبيقي: دليل عملي من المبتدئين إلى المحترفين المقدمة: أصبح التعلم الآلي (ML) جزءًا لا يتجزأ من حياتنا اليومية، من المساعدين الافتراضيين إلى السيارات ذاتية القيادة. ومع ذلك، لا يزال الكثيرون يعتقدون أن نماذج ML يمكن أن تعمل بشكل مستقل، مما يعيق الابتكار في الذكاء الاصطناعي (AI). أدى هذا المفهوم الخاطئ إلى عدم فهم إمكانات ML الحقيقية وتطبيقها العملي. في الواقع، تتطلب نماذج ML التكامل داخل نظام معقد يغطي المدخلات والتجهيز والمخرجات. يهدف هذا الكتاب، التعلم الآلي التطبيقي: دليل عملي من مبتدئ إلى محترف، إلى تغيير فهمك لـ ML وتطبيقاتها العملية.
응용 기계 학습: 초보자에서 프로 소개까지의 실용 가이드: 기계 학습 (ML) 은 가상 어시스턴트에서 자율 주행 자동차에 이르기까지 일상 생활에서 없어서는 안될 부분이되었습니다. 그러나 많은 사람들은 여전히 ML 모델이 자율적으로 작동하여 인공 지능 (AI) 의 혁신을 방해 할 수 있다고 생각합니다. 이러한 오해로 인해 ML의 진정한 잠재력과 실제 적용에 대한 이해가 부족했습니다. 실제로 ML 모델은 입력, 처리 및 출력을 다루는 복잡한 시스템 내에 통합이 필요합니다. 이 책인 Applied Machine arning: 초보자에서 전문가까지의 실용 가이드는 ML과 실제 응용 프로그램에 대한 이해를 변화시키는 것을 목표로합니다.
Applied Machine arning:初心者からプロまでの実用的なガイドはじめに:機械学習(ML)は、バーチャルアシスタントから自動運転車まで、私たちの日常生活の不可欠な部分となっています。しかしながら、多くの人は、人工知能(AI)の革新を妨げ、MLモデルが自律的に動作できると信じています。この誤解は、MLの真の可能性と実用化への理解の欠如につながった。実際、MLモデルには、入力、処理、出力をカバーする複雑なシステム内での統合が必要です。本書「Applied Machine arning: A Practical Guide from Beginner to Professional」は、MLとその実用的なアプリケーションの理解を変革することを目的としています。
應用機器學習:從初學者到專業人士的實用指南:機器學習(ML)已成為我們日常生活不可或缺的一部分,從虛擬助手到自動駕駛汽車。但是,許多人仍然認為ML模型可以自主運行,從而阻礙了人工智能(AI)的創新。這種誤解導致人們對ML的真正潛力及其實際應用缺乏了解。實際上,ML模型需要在涵蓋輸入,處理和輸出的綜合系統中集成。本書「應用機器學習:從初學者到專業人員的實用指南」旨在改變您對ML及其實際應用的理解。

You may also be interested in:

Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Practical Time Series Analysis Prediction with Statistics and Machine Learning (Early Release)
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Ultimate Step by Step Guide to Deep Learning Using Python Artificial Intelligence and Neural Network Concepts Explained in Simple Terms (Ultimate Step by Step Guide to Machine Learning Book 2)
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Machine Learning For Beginners Guide Algorithms Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction
Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality
Practical Automated Machine Learning on Azure Using AutoML to Build and Deploy Intelligent Solutions (Early Release)
Machine Learning for Civil and Environmental Engineers A Practical Approach to Data-driven Analysis, Explainability, and Causality
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications
Supervised Machine Learning with Python: A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024