BOOKS - Probabilistic Machine Learning for Finance and Investing: A Primer to Generat...
Probabilistic Machine Learning for Finance and Investing: A Primer to Generative AI with Python - Deepak K. Kanungo September 19, 2023 PDF  BOOKS
3 TON

Views
92184

Telegram
 
Probabilistic Machine Learning for Finance and Investing: A Primer to Generative AI with Python
Author: Deepak K. Kanungo
Year: September 19, 2023
Format: PDF
File size: PDF 22 MB
Language: English



Pay with Telegram STARS
Probabilistic Machine Learning for Finance and Investing: A Primer to Generative AI with Python As we continue to navigate the rapidly evolving world of technology, it is essential to understand the process of technological advancement and its impact on humanity. The book "Probabilistic Machine Learning for Finance and Investing" provides a comprehensive guide to the next-generation machine learning (ML) framework and technology for finance and investing. This primer on generative AI with Python offers a unique perspective on the evolution of modern knowledge and its potential to unify humanity in a warring state. The Need for Probabilistic Machine Learning Traditional ML models have limitations when it comes to financial datasets, which are often small and noisy. Probabilistic ML represents the next generation of ML frameworks that can continually learn from these datasets while seamlessly enabling probabilistic inference, prediction, and counterfactual reasoning. This approach treats uncertainties and errors as features rather than bugs, quantifying them as probability distributions rather than point estimates.
Вероятностное машинное обучение для финансов и инвестиций: букварь к генеративному ИИ с Python По мере того, как мы продолжаем ориентироваться в быстро развивающемся мире технологий, важно понимать процесс технологического прогресса и его влияние на человечество. Книга «Вероятностное машинное обучение для финансов и инвестирования» представляет собой всеобъемлющее руководство по структуре и технологиям машинного обучения (ML) нового поколения для финансов и инвестирования. Этот букварь по генеративному ИИ с Python предлагает уникальный взгляд на эволюцию современного знания и его потенциал для объединения человечества в воюющем государстве. Потребность в вероятностном машинном обучении Традиционные ML-модели имеют ограничения, когда речь идет о финансовых наборах данных, которые часто бывают небольшими и шумными. Вероятностный ML представляет собой следующее поколение ML-фреймворков, которые могут постоянно учиться на этих наборах данных, обеспечивая при этом беспрепятственный вероятностный вывод, прогнозирование и контрфактические рассуждения. Этот подход рассматривает неопределенности и ошибки как особенности, а не ошибки, количественно оценивая их как распределение вероятностей, а не точечные оценки.
L'apprentissage automatique probabiliste pour la finance et l'investissement : L'IA générative avec Python À mesure que nous continuons à naviguer dans le monde de la technologie en évolution rapide, il est important de comprendre le processus de progrès technologique et son impact sur l'humanité. livre « L'apprentissage automatique probabiliste pour la finance et l'investissement » est un guide complet sur la structure et les technologies de l'apprentissage automatique (ML) de nouvelle génération pour la finance et l'investissement. Cette introduction à l'IA générative avec Python offre une vision unique de l'évolution de la connaissance moderne et de son potentiel pour unir l'humanité dans un État en guerre. besoin d'apprentissage automatique probabiliste s modèles de LM traditionnels ont des limites lorsqu'il s'agit d'ensembles de données financières qui sont souvent petites et bruyantes. ML probabiliste représente la prochaine génération de cadres ML qui peuvent apprendre en permanence de ces ensembles de données, tout en fournissant une inférence probabiliste, une prévision et un raisonnement contrefactique sans entrave. Cette approche considère les incertitudes et les erreurs comme des caractéristiques plutôt que comme des erreurs, les quantifiant comme une distribution de probabilités plutôt que comme des estimations ponctuelles.
Probability Machine arning for Finance and Investment: book to generative AI con Python A medida que seguimos navegando en un mundo de tecnología en rápida evolución, es importante comprender el proceso de progreso tecnológico y su impacto en la humanidad. libro «Probability Machine arning for Finance and Investment» (Aprendizaje automático probabilístico para finanzas e inversiones) es una guía integral sobre la estructura y las tecnologías de aprendizaje automático (ML) de nueva generación para finanzas e inversiones. Esta carta sobre la IA generativa con Python ofrece una visión única de la evolución del conocimiento moderno y su potencial para unir a la humanidad en un estado en guerra. Necesidad de aprendizaje automático probabilístico modelos ML tradicionales tienen limitaciones cuando se trata de conjuntos de datos financieros que a menudo son pequeños y ruidosos. ML probabilístico es la siguiente generación de frameworks ML que pueden aprender constantemente de estos conjuntos de datos, al tiempo que proporcionan una conclusión probabilística, predicción y razonamiento contrafáctico sin obstáculos. Este enfoque considera las incertidumbres y los errores como características en lugar de errores, cuantificándolos como una distribución de probabilidad en lugar de estimaciones puntuales.
Probabile apprendimento automatico per la finanza e l'investimento: bookmaker per l'intelligenza artificiale generica con Python Mentre continuiamo a orientarci nel mondo tecnologico in rapida evoluzione, è importante comprendere il processo di progresso tecnologico e il suo impatto sull'umanità. Il libro «Apprendimento automatico probabile per la finanza e l'investimento» è una guida completa alla struttura e alle tecnologie di apprendimento automatico (ML) di nuova generazione per la finanza e l'investimento. Questo bozzetto di IA generale con Python offre una visione unica dell'evoluzione della conoscenza moderna e del suo potenziale per unire l'umanità in uno stato in guerra. La necessità di apprendimento automatico probabile I modelli ML tradizionali hanno dei limiti quando si tratta di set di dati finanziari, che spesso sono piccoli e rumorosi. Il ML probabile è la prossima generazione di frame ML che possono imparare in continuazione da questi set di dati, fornendo al contempo una conclusione, una previsione e un ragionamento controfattico senza problemi. Questo approccio considera le incertezze e gli errori come caratteristiche e non errori, quantificandoli come una distribuzione delle probabilità piuttosto che valutazioni puntuali.
Probabilistisches maschinelles rnen für Finanzen und Investitionen: Grundvoraussetzung für generative KI mit Python Während wir uns weiterhin in der schnelllebigen Welt der Technologie bewegen, ist es wichtig, den Prozess des technologischen Fortschritts und seine Auswirkungen auf die Menschheit zu verstehen. Das Buch Probabilistic Machine arning for Finance and Investment ist ein umfassender itfaden für die Struktur und Technologie des maschinellen rnens (ML) der nächsten Generation für Finanzen und Investitionen. Diese generative KI-Fiktion mit Python bietet einen einzigartigen Einblick in die Entwicklung des modernen Wissens und sein Potenzial, die Menschheit in einem kriegsführenden Staat zu vereinen. Die Notwendigkeit für probabilistisches maschinelles rnen Traditionelle ML-Modelle haben Grenzen, wenn es um finanzielle Datensätze geht, die oft klein und laut sind. Die probabilistische ML repräsentiert die nächste Generation von ML-Frameworks, die kontinuierlich aus diesen Datensätzen lernen können und gleichzeitig eine ungehinderte probabilistische Schlussfolgerung, Vorhersage und kontrafaktische Argumentation bieten. Dieser Ansatz betrachtet Unsicherheiten und Fehler als Merkmale und nicht als Fehler und quantifiziert sie als Wahrscheinlichkeitsverteilung und nicht als Punktschätzungen.
''
Finans ve Yatırım için Olasılıksal Makine Öğrenimi: Python ile Üretken AI'ya Bir Astar Hızla gelişen teknoloji dünyasında gezinmeye devam ederken, teknolojik ilerleme sürecini ve insanlık üzerindeki etkisini anlamak önemlidir. Finans ve Yatırım için Olasılıksal Makine Öğrenimi kitabı, finans ve yatırım için yeni nesil makine öğrenimi (ML) yapısı ve teknolojileri için kapsamlı bir kılavuzdur. Bu Python üretken AI astarı, modern bilginin evrimi ve insanlığı savaşan bir durumda birleştirme potansiyeli hakkında benzersiz bir bakış açısı sunar. Olasılıksal makine öğrenimi ihtiyacı Geleneksel ML modelleri, genellikle küçük ve gürültülü olan finansal veri kümeleri söz konusu olduğunda sınırlamalara sahiptir. Olasılıksal ML, kesintisiz olasılıksal çıkarım, tahmin ve karşı-olgusal akıl yürütme sağlarken, bu veri kümelerinden sürekli olarak öğrenebilen yeni nesil ML çerçevelerini temsil eder. Bu yaklaşım, belirsizlikleri ve hataları hatalardan ziyade özellikler olarak ele alır ve bunları nokta tahminleri yerine olasılık dağılımları olarak nicelleştirir.
التعلم الآلي الاحتمالي للتمويل والاستثمار: Primer to Generative AI with Python بينما نواصل التنقل في عالم التكنولوجيا سريع التطور، من المهم فهم عملية التقدم التكنولوجي وتأثيره على البشرية. الكتاب، التعلم الآلي الاحتمالي للتمويل والاستثمار، هو دليل شامل لهيكل الجيل التالي من التعلم الآلي (ML) وتقنيات التمويل والاستثمار. يقدم كتاب الذكاء الاصطناعي المولد من بايثون منظورًا فريدًا لتطور المعرفة الحديثة وإمكاناتها لتوحيد البشرية في حالة حرب. الحاجة إلى التعلم الآلي الاحتمالي نماذج ML التقليدية لها قيود عندما يتعلق الأمر بمجموعات البيانات المالية، والتي غالبًا ما تكون صغيرة وصاخبة. يمثل ML الاحتمالي الجيل التالي من أطر ML التي يمكنها التعلم باستمرار من مجموعات البيانات هذه مع توفير استنتاج احتمالي سلس وتنبؤ ومنطق مضاد. يعامل هذا النهج الشكوك والأخطاء على أنها سمات بدلاً من أخطاء، ويقيمها على أنها توزيعات احتمالية بدلاً من تقديرات النقاط.

You may also be interested in:

Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning in Trading: Step by step implementation of Machine Learning models
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Mastering Excel VBA and Machine Learning A Complete, Step-by-Step Guide To Learn and Master Excel VBA and Machine Learning From Scratch
Signal Processing and Machine Learning for Brain-Machine Interfaces
Machine Learning with Python Advanced Guide in Machine Learning with Python
Machine Learning with Python 3 in 1 Beginners Guide + Step by Step Methods + Advanced Methods and Strategies to Learn Machine Learning with Python
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Machine Learning with Python A Step-By-Step Guide to Learn and Master Python Machine Learning
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Learning TensorFlow.js Powerful Machine Learning in javascript
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Federated Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications