BOOKS - Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and ...
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series) - Jesus Rogel-Salazar January 1, 2017 PDF  BOOKS
3 TON

Views
34248

Telegram
 
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Author: Jesus Rogel-Salazar
Year: January 1, 2017
Format: PDF
File size: PDF 16 MB
Language: English



Pay with Telegram STARS
Book Description: Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as Scikit-learn, Pandas, Numpy, and others. The use of Python is particularly interesting given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. Data science and analytics are discussed from the point of view of the process and results obtained, and important features of Python are also covered, including a Python primer. Regression analysis using Python, clustering techniques, classification algorithms, and dimensionality reduction techniques are explored in the second part of the book. Hierarchical clustering, decision trees, ensemble techniques, and recommendation systems are also discussed. Finally, the support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author: Dr. Jess Rogel Salazar is a lead data scientist with experience in the field, working for companies such as AKQA, IBM Data Science Studio, Dow Jones, and others.
Data Science and Analytics с Python предназначен для практиков в области науки о данных и аналитики данных как в академической, так и в деловой среде. Цель состоит в том, чтобы представить читателю основные концепции, используемые в науке о данных, используя инструменты, разработанные на Python, такие как Scikit-learn, Pandas, Numpy и другие. Использование Python особенно интересно, учитывая его недавнюю популярность в сообществе data science. Книгой могут пользоваться как матерые программисты, так и новички. Книга организована таким образом, что отдельные главы достаточно независимы друг от друга, чтобы читателю было удобно использовать содержание в качестве справочного материала. Наука о данных и аналитика обсуждаются с точки зрения процесса и полученных результатов, также освещаются важные особенности Python, включая Python-праймер. Регрессионный анализ с использованием Python, методы кластеризации, алгоритмы классификации и методы уменьшения размерности исследуются во второй части книги. Также обсуждаются иерархическая кластеризация, деревья решений, методы ансамбля и системы рекомендаций. Наконец, алгоритм машины опорных векторов и трюк Kernel обсуждаются в последней части книги. Об авторе: Доктор Джесс Рогель Салазар - ведущий специалист по данным с опытом работы в этой области, работающий в таких компаниях, как AKQA, IBM Data Science Studio, Dow Jones и других.
Data Science and Analytics with Python est conçu pour les praticiens de la science des données et de l'analyse des données dans les milieux académiques et commerciaux. L'objectif est de présenter au lecteur les concepts de base utilisés dans la science des données, en utilisant des outils développés sur Python, tels que Scikit-learn, Pandas, Numpy et d'autres. L'utilisation de Python est particulièrement intéressante compte tenu de sa popularité récente dans la communauté de la science des données. s programmeurs et les débutants peuvent utiliser le livre. livre est organisé de telle sorte que les chapitres individuels sont suffisamment indépendants les uns des autres pour que le lecteur puisse utiliser le contenu comme référence. La science des données et l'analyse sont discutées du point de vue du processus et des résultats obtenus, et les caractéristiques importantes de Python, y compris l'amorce Python, sont également mises en évidence. L'analyse de régression à l'aide de Python, les méthodes de regroupement, les algorithmes de classification et les méthodes de réduction de la dimension sont étudiés dans la deuxième partie du livre. regroupement hiérarchique, les arbres de décision, les méthodes d'ensemble et les systèmes de recommandations sont également discutés. Enfin, l'algorithme de la machine de vecteur de référence et le tour de Kernel sont discutés dans la dernière partie du livre. À propos de l'auteur : Dr Jess Rogel Salazar est un spécialiste des données de premier plan avec une expérience dans ce domaine, travaillant pour des entreprises telles que AKQA, IBM Data Science Studio, Dow Jones et d'autres.
Data Science and Analytics con Python está diseñado para profesionales en ciencia de datos y análisis de datos tanto en entornos académicos como empresariales. objetivo es presentar al lector los conceptos básicos utilizados en la ciencia de datos, utilizando herramientas desarrolladas en Python como Scikit-learn, Pandas, Numpy, entre otros. uso de Python es especialmente interesante dada su reciente popularidad en la comunidad de la ciencia de datos. libro puede ser utilizado tanto por programadores maternos como por principiantes. libro está organizado de tal manera que los capítulos individuales son lo suficientemente independientes como para que el lector pueda utilizar el contenido como material de referencia. La ciencia de los datos y el análisis se discuten en términos de proceso y resultados obtenidos, también se destacan las características importantes de Python, incluyendo Python-primer. análisis de regresión con Python, las técnicas de agrupamiento, los algoritmos de clasificación y las técnicas de reducción de dimensión se investigan en la segunda parte del libro. También se discute la agrupación jerárquica, los árboles de decisión, los métodos de conjunto y los sistemas de recomendación. Finalmente, el algoritmo de la máquina de vectores de referencia y el truco de Kernel se discuten en la última parte del libro. Sobre el autor: doctor Jess Rogel Salazar es un destacado especialista en datos con experiencia en este campo, que trabaja en empresas como AKQA, IBM Data Science Studio, Dow Jones, entre otras.
Data Science and Analytics con Python è progettato per gli esperti di scienze dei dati e gli analisti di dati sia accademici che aziendali. L'obiettivo è quello di presentare al lettore i concetti di base utilizzati nella scienza dei dati utilizzando strumenti sviluppati su Python come Scikit-learn, Pandas, Numpy e altri. L'uso di Python è particolarmente interessante data la sua recente popolarità nella comunità data science. Il libro può essere utilizzato sia dai programmatori maturi che dai principianti. Il libro è organizzato in modo che i singoli capitoli siano abbastanza indipendenti l'uno dall'altro da consentire al lettore di utilizzare il contenuto come materiale di riferimento. La scienza dei dati e l'analisi sono discussi dal punto di vista del processo e dei risultati ottenuti e evidenziano anche le caratteristiche importanti di Python, incluso il Python Primer. L'analisi di regressione con Python, i metodi di clustering, gli algoritmi di classificazione e i metodi di riduzione della dimensione vengono esaminati nella seconda parte del libro. discute anche di clustering gerarchico, alberi di soluzioni, metodi di gruppo e sistemi di raccomandazione. Infine, l'algoritmo della macchina dei vettori di riferimento e il trucco Kernel sono discussi nell'ultima parte del libro. Il Dott. Jess Rogel Salazar è un esperto di dati con esperienza in questo campo, che lavora in aziende come AKQA, IBM Data Science Studio, Dow Jones e altre.
Data Science and Analytics mit Python richtet sich an Praktiker in den Bereichen Data Science und Data Analytics sowohl im akademischen als auch im geschäftlichen Umfeld. Ziel ist es, dem ser die grundlegenden Konzepte der Datenwissenschaft mit Hilfe von in Python entwickelten Tools wie Scikit-learn, Pandas, Numpy und anderen vorzustellen. Die Verwendung von Python ist besonders interessant angesichts seiner jüngsten Popularität in der Data-Science-Community. Das Buch kann sowohl von erfahrenen Programmierern als auch von Anfängern verwendet werden. Das Buch ist so organisiert, dass die einzelnen Kapitel so unabhängig voneinander sind, dass es für den ser bequem ist, den Inhalt als Referenz zu verwenden. Datenwissenschaft und Analytik werden in Bezug auf den Prozess und die erzielten Ergebnisse diskutiert, und wichtige Merkmale von Python, einschließlich Python-Primer, werden ebenfalls hervorgehoben. Regressionsanalysen mit Python, Clustering-Methoden, Klassifikationsalgorithmen und Methoden zur Dimensionsreduktion werden im zweiten Teil des Buches untersucht. Auch hierarchische Clustering, Entscheidungsbäume, Ensemblemethoden und Empfehlungssysteme werden diskutiert. Schließlich werden der Algorithmus der Support-Vector-Maschine und der Kernel-Trick im letzten Teil des Buches diskutiert. Über den Autor: Dr. Jess Rogel Salazar ist ein führender Datenspezialist mit Erfahrung in diesem Bereich, der für Unternehmen wie AKQA, IBM Data Science Studio, Dow Jones und andere arbeitet.
''
Python ile Veri Bilimi ve Analitiği, hem akademik hem de iş ortamlarındaki veri bilimi ve veri analizi uygulayıcıları için tasarlanmıştır. Amaç, okuyucuya Scikit-learn, Pandas, Numpy ve diğerleri gibi Python'da geliştirilen araçları kullanarak veri biliminde kullanılan temel kavramları sunmaktır. Python'un kullanımı, veri bilimi topluluğundaki son popülerliği göz önüne alındığında özellikle ilginçtir. Kitap hem deneyimli programcılar hem de yeni başlayanlar tarafından kullanılabilir. Kitap, bireysel bölümlerin, okuyucunun içeriği referans materyal olarak kullanmasını kolaylaştırmak için birbirinden yeterince bağımsız olacak şekilde düzenlenmiştir. Veri bilimi ve analitiği, süreç ve elde edilen sonuçlar açısından tartışılır ve Python astarı da dahil olmak üzere Python'un önemli özellikleri de vurgulanır. Python kullanarak regresyon analizi, kümeleme yöntemleri, sınıflandırma algoritmaları ve boyutluluk azaltma yöntemleri kitabın ikinci bölümünde incelenmiştir. Hiyerarşik kümeleme, karar ağaçları, topluluk yöntemleri ve öneri sistemleri de tartışılmaktadır. Son olarak, destek vektör makinesi algoritması ve Kernel hilesi kitabın son bölümünde ele alınmıştır. Yazar hakkında: Dr. Jess Rogel Salazar, alanında deneyimli, AKQA, IBM Data Science Studio, Dow Jones ve diğerleri gibi şirketler için çalışan önde gelen bir veri bilimcisidir.
تم تصميم علوم وتحليلات البيانات مع Python لممارسي علوم البيانات وتحليلات البيانات في كل من البيئات الأكاديمية والتجارية. الهدف هو تقديم المفاهيم الأساسية المستخدمة في علم البيانات للقارئ باستخدام الأدوات التي تم تطويرها في بايثون، مثل Scikit-learn و Pandas و Numpy وغيرها. يعد استخدام Python مثيرًا للاهتمام بشكل خاص نظرًا لشعبيته الأخيرة في مجتمع علوم البيانات. يمكن استخدام الكتاب من قبل كل من المبرمجين والمبتدئين المخضرمين. يتم تنظيم الكتاب بطريقة تجعل الفصول الفردية مستقلة بما فيه الكفاية عن بعضها البعض لجعل من الملائم للقارئ استخدام المحتوى كمواد مرجعية. تتم مناقشة علم البيانات والتحليلات من حيث العملية والنتائج التي تم الحصول عليها، ويتم أيضًا تسليط الضوء على السمات المهمة لبايثون، بما في ذلك Python primer. يتم استكشاف تحليل الانحدار باستخدام Python وطرق التجميع وخوارزميات التصنيف وطرق تقليل الأبعاد في الجزء الثاني من الكتاب. كما تمت مناقشة التجميع الهرمي وأشجار القرار وطرق المجموعات ونظم التوصيات. أخيرًا، تمت مناقشة خوارزمية آلة ناقل الدعم وخدعة Kernel في الجزء الأخير من الكتاب. حول المؤلف: الدكتور جيس روجل سالازار عالم بيانات رائد لديه خبرة في هذا المجال، ويعمل في شركات مثل AKQA و IBM Data Science Studio و Dow Jones وغيرها.

You may also be interested in:

IoT Data Analytics using Python: Learn how to use Python to collect, analyze, and visualize IoT data (English Edition)
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
It|s All Analytics, Part III: The Applications of AI, Analytics, and Data Science (It|s All Analytics, 3)
PYTHON ARRAYS AND PYTHON NUMPY FOR BEGINNERS: MASTER DATA MANIPULATION EASILY AND UNLEASH THE POWER OF DATA SCIENCE WITH EASY-TO-FOLLOW TUTORIALS - 2 BOOKS IN 1
Python for Data Science Data analysis and Deep learning with Python coding and programming
Python For Data Science The Ultimate Beginners’ Guide to Learning Python Data Science Step by Step
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Python Coding 2 Books in 1 Python Programming and Data Analytics
Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Agile Data Science Building Data Analytics Applications with Hadoop
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Data Science and Big Data Analytics in Smart Environments
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Programming 3 Manuscripts Python Crash Course, Python Machine Learning and Python Data Science for Beginners
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
Data Science and Data Analytics Opportunities and Challenges
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python for Data Science A Practical Guide to Master Python Programming and System Administration. Discover The Essentials of Machine Learning and Artificial Intelligent Using Python Code
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Ultimate Big Data Analytics with Apache Hadoop Master Big Data Analytics with Apache Hadoop Using Apache Spark, Hive, and Python
Ultimate Big Data Analytics with Apache Hadoop Master Big Data Analytics with Apache Hadoop Using Apache Spark, Hive, and Python
Data Analytics for Finance Using Python
Data Analytics for Finance Using Python
Starting Data Analytics with Generative AI and Python
Python 3 and Data Analytics Pocket Primer
Starting Data Analytics with Generative AI and Python
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter