BOOKS - Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mi...
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series) - Jesus Rogel-Salazar May 5, 2020 PDF  BOOKS
3 TON

Views
4410

Telegram
 
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Author: Jesus Rogel-Salazar
Year: May 5, 2020
Format: PDF
File size: PDF 16 MB
Language: English



Pay with Telegram STARS
Advanced Data Science and Analytics with Python: A Comprehensive Guide to Developing Advanced Data Products In today's rapidly evolving technological landscape, it is crucial for data scientists to continuously develop their skills and apply them in both business and academic settings. Advanced Data Science and Analytics with Python provides data scientists with the tools and knowledge necessary to excel in this ever-changing field. This follow-up to the authors' previous volume, Data Science and Analytics with Python, delves into advanced areas of data science using popular Python libraries such as Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX, and more. The book offers a practical perspective on the data science workflow, focusing on the process and results obtained, making it accessible to readers with varying levels of experience. Need for Personal Paradigm in Perceiving Technological Processes As technology continues to advance at an unprecedented rate, it is essential for humanity to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm will serve as the basis for our survival and the unification of people in a warring state. By understanding the technological process, we can harness its power to improve our lives and create a better future for ourselves and future generations.
Advanced Data Science and Analytics with Python: A Comprehensive Guide to Development Advanced Data Products В современном быстро развивающемся технологическом ландшафте для специалистов по анализу данных крайне важно постоянно развивать свои навыки и применять их как в деловых, так и в академических условиях. Advanced Data Science and Analytics with Python предоставляет data-ученым инструменты и знания, необходимые для того, чтобы преуспеть в этой постоянно меняющейся области. Это продолжение предыдущего тома авторов, Data Science and Analytics with Python, углубляется в передовые области науки о данных, используя популярные библиотеки Python, такие как Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX и другие. Книга предлагает практический взгляд на рабочий процесс науки о данных, фокусируясь на процессе и полученных результатах, что делает его доступным для читателей с различным уровнем опыта. Потребность в личной парадигме в восприятии технологических процессов По мере того, как технологии продолжают развиваться беспрецедентными темпами, человечеству необходимо выработать личную парадигму восприятия технологического процесса развития современных знаний. Эта парадигма послужит основой для нашего выживания и объединения людей в воюющем государстве. Понимая технологический процесс, мы можем использовать его силу для улучшения нашей жизни и создания лучшего будущего для себя и будущих поколений.
Advanced Data Science and Analytics with Python : A Comprehensive Guide to Development Advanced Data Products Dans le paysage technologique en évolution rapide d'aujourd'hui, il est essentiel pour les professionnels de l'analyse de données de développer constamment leurs compétences et de les appliquer dans un contexte professionnel et académique. Advanced Data Science and Analytics with Python fournit aux scientifiques des données les outils et les connaissances nécessaires pour exceller dans ce domaine en constante évolution. Cette suite du précédent volume des auteurs, Data Science and Analytics with Python, s'oriente vers les domaines avancés de la science des données en utilisant les bibliothèques populaires de Python telles que Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX et d'autres. livre offre une vue pratique du flux de travail de la science des données, en se concentrant sur le processus et les résultats obtenus, ce qui le rend accessible aux lecteurs ayant différents niveaux d'expérience. besoin d'un paradigme personnel dans la perception des processus technologiques Alors que la technologie continue d'évoluer à un rythme sans précédent, l'humanité doit développer un paradigme personnel dans la perception du processus technologique du développement des connaissances modernes. Ce paradigme servira de base à notre survie et à l'unification des peuples dans un État en guerre. En comprenant le processus technologique, nous pouvons utiliser son pouvoir pour améliorer nos vies et créer un meilleur avenir pour nous-mêmes et les générations futures.
Advanced Data Science and Analytics with Python: A Comprehensive Guide to Development Advanced Data Products En el panorama tecnológico en rápida evolución de hoy en día, es fundamental contar con expertos en análisis de datos en todo momento desarrollar sus habilidades y aplicarlas tanto en entornos empresariales como académicos. Advanced Data Science and Analytics with Python proporciona a los científicos de datos las herramientas y los conocimientos necesarios para tener éxito en este campo en constante cambio. Esta continuación del volumen anterior de los autores, Data Science and Analytics with Python, profundiza en las áreas avanzadas de la ciencia de datos, utilizando las bibliotecas populares de Python como Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NLTK, Numpy networkX y otros. libro ofrece una visión práctica del flujo de trabajo de la ciencia de datos, enfocándose en el proceso y los resultados obtenidos, lo que lo hace accesible para lectores con diferentes niveles de experiencia. La necesidad de un paradigma personal para percibir los procesos tecnológicos A medida que la tecnología continúa evolucionando a un ritmo sin precedentes, la humanidad necesita desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno. Este paradigma servirá de base para nuestra supervivencia y la unificación de las personas en un Estado en guerra. Al comprender el proceso tecnológico, podemos usar su poder para mejorar nuestras vidas y crear un futuro mejor para nosotros mismos y las generaciones futuras.
Advanced Data Science and Analytics with Python: A Comprehensive Guide to Development Advanced Data Products In un panorama tecnologico in continua evoluzione, per gli esperti di analisi dei dati è fondamentale sviluppare le proprie competenze e applicarle in modo costante sia in ambienti aziendali che accademici. Advanced Data Science and Analytics with Python fornisce agli scienziati dei dati gli strumenti e le conoscenze necessari per ottenere successo in questo campo in continua evoluzione. Questa estensione del volume precedente degli autori, Data Science and Analytics with Python, si approfondisce nelle aree avanzate della scienza dei dati utilizzando le più popolari librerie Python, come Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, e altri. Il libro offre una visione pratica del flusso di lavoro della scienza dei dati, focalizzandosi sul processo e sui risultati ottenuti, rendendolo accessibile ai lettori con diversi livelli di esperienza. La necessità di un paradigma personale nella percezione dei processi tecnologici Mentre la tecnologia continua a crescere a un ritmo senza precedenti, l'umanità ha bisogno di sviluppare un paradigma personale per la percezione del processo di sviluppo della conoscenza moderna. Questo paradigma sarà la base per la nostra sopravvivenza e l'unione delle persone in uno stato in guerra. Comprendendo il processo tecnologico, possiamo usare il suo potere per migliorare la nostra vita e creare un futuro migliore per noi stessi e per le generazioni future.
Advanced Data Science and Analytics with Python: A Comprehensive Guide to Development Advanced Data Products In der heutigen schnelllebigen Technologielandschaft ist es für Data Scientists unerlässlich, ihre Fähigkeiten kontinuierlich weiterzuentwickeln und sowohl im geschäftlichen als auch im akademischen Umfeld anzuwenden. Advanced Data Science and Analytics mit Python bietet Data Scientists die Werkzeuge und das Wissen, die sie benötigen, um in diesem sich ständig verändernden Bereich erfolgreich zu sein. Diese Fortsetzung des vorherigen Autorenbandes, Data Science and Analytics with Python, vertieft sich in die fortgeschrittenen Bereiche der Datenwissenschaft und verwendet beliebte Python-Bibliotheken wie Scikit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX und andere. Das Buch bietet einen praktischen Einblick in den Workflow der Data Science, indem es sich auf den Prozess und die erzielten Ergebnisse konzentriert und so für ser mit unterschiedlichem Erfahrungsniveau zugänglich ist. Die Notwendigkeit eines persönlichen Paradigmas in der Wahrnehmung technologischer Prozesse Während sich die Technologie in einem beispiellosen Tempo weiterentwickelt, muss die Menschheit ein persönliches Paradigma in der Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens entwickeln. Dieses Paradigma wird als Grundlage für unser Überleben und die Vereinigung der Menschen in einem kriegführenden Staat dienen. Indem wir den technologischen Prozess verstehen, können wir seine Kraft nutzen, um unser ben zu verbessern und eine bessere Zukunft für uns selbst und zukünftige Generationen zu schaffen.
''
Python ile Gelişmiş Veri Bilimi ve Analitiği: Gelişmiş Veri Ürünleri Geliştirmek için Kapsamlı Bir Kılavuz Günümüzün hızla gelişen teknoloji ortamında, veri bilimcilerinin becerilerini sürekli olarak geliştirmeleri ve bunları hem iş hem de akademik ortamlarda uygulamaları çok önemlidir. Python ile Gelişmiş Veri Bilimi ve Analitiği, veri bilimcilerine bu sürekli değişen alanda üstünlük sağlamak için ihtiyaç duydukları araçları ve bilgileri sağlar. Yazarların önceki cildi olan Python ile Data Science ve Analytics'in bu takibi, Scikit-learn, Pandas, Numpy, Beautiful Soul, NLTK, NetworkX ve diğerleri gibi popüler Python kütüphanelerini kullanarak veri biliminin en ileri alanlarına girer. Kitap, veri bilimi iş akışına pratik bir bakış açısı sunarak, sürece ve elde edilen sonuçlara odaklanarak, farklı seviyelerde deneyime sahip okuyucular için erişilebilir olmasını sağlar. Teknolojik süreçlerin algılanmasında kişisel bir paradigma ihtiyacı Teknoloji benzeri görülmemiş bir hızla gelişmeye devam ederken, insanlığın modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirmesi gerekmektedir. Bu paradigma, hayatta kalmamızın ve savaşan bir devlette insanların birleşmesinin temeli olarak hizmet edecektir. Teknolojik süreci anlayarak, hayatımızı iyileştirmek ve kendimiz ve gelecek nesiller için daha iyi bir gelecek yaratmak için gücünü kullanabiliriz.
علوم وتحليلات البيانات المتقدمة مع Python: دليل شامل لتطوير منتجات البيانات المتقدمة في المشهد التكنولوجي سريع التطور اليوم، من الأهمية بمكان لعلماء البيانات تطوير مهاراتهم باستمرار وتطبيقها في كل من الأعمال التجارية والأكاديمية. توفر علوم وتحليلات البيانات المتقدمة مع Python لعلماء البيانات الأدوات والمعرفة التي يحتاجون إليها للتفوق في هذا المجال المتغير باستمرار. هذه المتابعة لمجلد المؤلفين السابق، Data Science and Analytics with Python، تتعمق في أحدث مجالات علوم البيانات باستخدام مكتبات Python الشهيرة مثل Scikit-learn و Pandas و Numby و Beautiful Soul و NTK X T X وغيرها. يقدم الكتاب منظورًا عمليًا لسير عمل علم البيانات، مع التركيز على العملية والنتائج التي تم الحصول عليها، مما يجعله في متناول القراء ذوي المستويات المختلفة من الخبرة. الحاجة إلى نموذج شخصي في تصور العمليات التكنولوجية مع استمرار تطور التكنولوجيا بوتيرة غير مسبوقة، تحتاج البشرية إلى تطوير نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة. سيكون هذا النموذج بمثابة أساس لبقائنا وتوحيد الناس في دولة متحاربة. من خلال فهم العملية التكنولوجية، يمكننا استخدام قوتها لتحسين حياتنا وخلق مستقبل أفضل لأنفسنا وللأجيال القادمة.

You may also be interested in:

Data Science and Risk Analytics in Finance and Insurance (Chapman and Hall CRC Financial Mathematics Series)
Modern Data Analytics in Excel: Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Modern Data Analytics in Excel Using Power Query, Power Pivot, and More for Enhanced Data Analytics
Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Big Data and Analytics The key concepts and practical applications of Big Data analytics
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Python for Data Analytics A Beginners Guide for Learning Python Data Analytics from A-Z
Augmented Analytics: Enabling Analytics Transformation for Data-Informed Decisions
Advanced Binary for Programming & Computer Science Logical, Bitwise and Arithmetic Operations, and Data Encoding and Representation
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (Final Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Data Mining and Analytics in Healthcare Management: Applications and Tools (International Series in Operations Research and Management Science, 341)
Natural Language Processing in the Real World: Text Processing, Analytics, and Classification (Chapman and Hall CRC Data Science Series)
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Functional Programming in R 4: Advanced Statistical Programming for Data Science, Analysis, and Finance
Big Data Governance Modern Data Management Principles for Hadoop, NoSQL & Big Data Analytics
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Data Analytics and AI (Data Analytics Applications)
Big Data Management Data Governance Principles for Big Data Analytics, 1st Edition
Systems for Analytics, Data Science, & Artificial Intelligence Systems for Decision Support, 11th Edition, Global Edition
Data Science A Comprehensive Beginners Guide to Learn the Realms of Data Science
Data Science A Comprehensive Beginner’s Guide to Learn About the Realms of Data Science from A-Z
Data Science: A First Introduction (Chapman and Hall CRC Data Science Series)
Data Pipelines Pocket Reference Moving and Processing Data for Analytics (Final)
Real-Time Data Analytics for Large Scale Sensor Data Volume Six
Data Analytics for Absolute Beginners A Deconstructed Guide to Data Literacy, Second Edition