BOOKS - Statistics 553. Asymptotic tools
Statistics 553. Asymptotic tools - Hunter D.R. 2006 PDF  BOOKS
Stars49 Stars 2 TON

Views
56762

Telegram
 
Statistics 553. Asymptotic tools
Author: Hunter D.R.
Year: 2006
Format: PDF
File size: PDF 1.5 MB
Language: English



Pay with Telegram STARS
Book Description: The book "Statistics 553 Asymptotic Tools" by David J. B. O'Hagan and Andrew J. O. Brown provides a comprehensive overview of the asymptotic theory and its applications in statistics. The authors present a systematic approach to understanding the asymptotic properties of statistical methods, including the use of asymptotic distributions, Bayesian inference, and hypothesis testing. They also discuss the limitations of these methods and provide guidance on how to avoid common pitfalls. The book is divided into four parts: Part I covers the basic concepts and techniques of asymptotic statistics, including the use of asymptotic distributions and the central limit theorem. Part II explores the application of asymptotic statistics in more advanced topics such as Bayesian inference and hypothesis testing. Part III delves into the practical aspects of using asymptotic statistics in real-world data analysis, including the use of computational algorithms and the importance of model diagnostics. Finally, Part IV discusses the future directions of asymptotic statistics and its potential applications in emerging fields such as machine learning and data science. Throughout the book, the authors emphasize the importance of understanding the underlying assumptions of statistical methods and the need for careful model specification to ensure accurate results.
В книге «Statistics 553 Asymptotic Tools» Дэвида Дж. Б. О'Хагана и Эндрю Дж. О. Брауна представлен всесторонний обзор асимптотической теории и её приложений в статистике. Авторы представляют систематический подход к пониманию асимптотических свойств статистических методов, включая использование асимптотических распределений, байесовский вывод и проверку гипотез. Они также обсуждают ограничения этих методов и дают рекомендации о том, как избежать распространенных ловушек. Книга разделена на четыре части: Часть I охватывает основные понятия и техники асимптотической статистики, включая использование асимптотических распределений и центральной предельной теоремы. Часть II исследует применение асимптотической статистики в более продвинутых темах, таких как байесовский вывод и проверка гипотез. Часть III углубляется в практические аспекты использования асимптотической статистики в реальном анализе данных, включая использование вычислительных алгоритмов и важность диагностики моделей. Наконец, в части IV обсуждаются будущие направления асимптотической статистики и ее потенциальные применения в новых областях, таких как машинное обучение и наука о данных. На протяжении всей книги авторы подчеркивают важность понимания основных допущений статистических методов и необходимость тщательной спецификации модели для обеспечения точных результатов.
livre « Statistics 553 Asymptotic Tools » de David J. B. O'Hagan et Andrew J. O. Brown présente un aperçu complet de la théorie asymptotique et de ses applications dans les statistiques. s auteurs présentent une approche systématique pour comprendre les propriétés asymptotiques des méthodes statistiques, y compris l'utilisation des distributions asymptotiques, la conclusion bayésienne et la vérification des hypothèses. Ils discutent également des limites de ces méthodes et formulent des recommandations sur la façon d'éviter les pièges courants. livre est divisé en quatre parties : La partie I couvre les concepts et techniques de base des statistiques asymptotiques, y compris l'utilisation des distributions asymptotiques et le théorème limite central. La partie II examine l'application des statistiques asymptotiques à des sujets plus avancés, tels que la conclusion bayésienne et la vérification des hypothèses. La partie III explore les aspects pratiques de l'utilisation des statistiques asymptotiques dans l'analyse des données réelles, y compris l'utilisation d'algorithmes de calcul et l'importance du diagnostic des modèles. Enfin, la partie IV examine les orientations futures des statistiques asymptotiques et leurs applications potentielles dans de nouveaux domaines tels que l'apprentissage automatique et la science des données. Tout au long du livre, les auteurs soulignent l'importance de comprendre les principales hypothèses des méthodes statistiques et la nécessité de spécifier soigneusement le modèle pour obtenir des résultats précis.
libro "Statistics 553 Asymptotic Tools'de David J. B. O'Hagan y Andrew J. O. Brown presenta una revisión completa de la teoría asintótica y sus aplicaciones en las estadísticas. autores presentan un enfoque sistemático para entender las propiedades asintóticas de los métodos estadísticos, incluyendo el uso de distribuciones asintóticas, la inferencia bayesiana y la verificación de hipótesis. También discuten las limitaciones de estos métodos y hacen recomendaciones sobre cómo evitar las trampas comunes. libro se divide en cuatro partes: La parte I abarca los conceptos y técnicas básicas de las estadísticas asintóticas, incluyendo el uso de distribuciones asintóticas y el teorema del límite central. La Parte II explora la aplicación de estadísticas asintóticas en temas más avanzados, como la inferencia bayesiana y la verificación de hipótesis. La parte III profundiza en los aspectos prácticos del uso de estadísticas asintóticas en el análisis real de datos, incluyendo el uso de algoritmos computacionales y la importancia del diagnóstico de modelos. Por último, en la parte IV se examinan las futuras orientaciones de las estadísticas asintóticas y sus posibles aplicaciones en nuevos campos, como el aprendizaje automático y la ciencia de los datos. A lo largo del libro, los autores subrayan la importancia de comprender los supuestos básicos de los métodos estadísticos y la necesidad de una especificación cuidadosa del modelo para garantizar resultados precisos.
Das Buch „Statistics 553 Asymptotic Tools“ von David J. B. O'Hagan und Andrew J. O. Brown gibt einen umfassenden Überblick über die asymptotische Theorie und ihre Anwendungen in der Statistik. Die Autoren präsentieren einen systematischen Ansatz zum Verständnis der asymptotischen Eigenschaften statistischer Methoden, einschließlich der Verwendung asymptotischer Verteilungen, bayesscher Schlussfolgerungen und Hypothesentests. e diskutieren auch die Grenzen dieser Methoden und geben Empfehlungen, wie man häufige Fallen vermeiden kann. Das Buch ist in vier Teile unterteilt: Teil I behandelt die grundlegenden Konzepte und Techniken der asymptotischen Statistik, einschließlich der Verwendung asymptotischer Verteilungen und des zentralen Grenzwertsatzes. Teil II untersucht die Anwendung asymptotischer Statistiken in fortgeschritteneren Themen wie Bayes'scher Inferenz und Hypothesentest. Teil III befasst sich mit den praktischen Aspekten der Verwendung asymptotischer Statistiken in der realen Datenanalyse, einschließlich der Verwendung von Computeralgorithmen und der Bedeutung der Modelldiagnose. Schließlich werden in Teil IV die zukünftigen Richtungen der asymptotischen Statistik und ihre möglichen Anwendungen in neuen Bereichen wie maschinellem rnen und Datenwissenschaft diskutiert. Im Laufe des Buches betonen die Autoren, wie wichtig es ist, die grundlegenden Annahmen statistischer Methoden zu verstehen und die Notwendigkeit einer sorgfältigen Spezifikation des Modells, um genaue Ergebnisse zu gewährleisten.
''
Statistics 553 Asimptotik Araçlar David J. B. O'Hagan ve Andrew J. O. Brown, asimptotik teoriye ve istatistikteki uygulamalarına kapsamlı bir genel bakış sağlar. Yazarlar, asimptotik dağılımların kullanımı, Bayes çıkarımı ve hipotez testi dahil olmak üzere istatistiksel yöntemlerin asimptotik özelliklerini anlamak için sistematik bir yaklaşım sunmaktadır. Ayrıca, bu yöntemlerin sınırlamalarını tartışırlar ve ortak tuzaklardan nasıl kaçınılacağı konusunda önerilerde bulunurlar. Kitap dört bölüme ayrılmıştır: Bölüm I, asimptotik dağılımların ve merkezi limit teoreminin kullanımı da dahil olmak üzere asimptotik istatistiğin temel kavramlarını ve tekniklerini kapsar. Bölüm II, Bayes çıkarımı ve hipotez testi gibi daha ileri konularda asimptotik istatistiklerin uygulanmasını araştırmaktadır. Bölüm III, hesaplamalı algoritmaların kullanımı ve model tanılamanın önemi de dahil olmak üzere, gerçek dünya veri analizinde asimptotik istatistiklerin kullanılmasının pratiklerini inceler. Son olarak, Bölüm IV, asimptotik istatistiğin gelecekteki yönlerini ve makine öğrenimi ve veri bilimi gibi gelişmekte olan alanlardaki potansiyel uygulamalarını tartışmaktadır. Kitap boyunca, yazarlar istatistiksel yöntemlerin temel varsayımlarını anlamanın önemini ve doğru sonuçları sağlamak için dikkatli model spesifikasyonuna duyulan ihtiyacı vurgulamaktadır.
Statistics 553 Asymptotic Tools by David J. B. O'Hagan and Andrew J. O. Brown تقدم لمحة عامة شاملة عن نظرية التقارب وتطبيقاتها في الإحصاء. يقدم المؤلفون نهجًا منهجيًا لفهم الخصائص المتقاربة للطرق الإحصائية، بما في ذلك استخدام التوزيعات المتقاربة، والاستدلال البايزي، واختبار الفرضية. كما يناقشون قيود هذه الأساليب ويقدمون توصيات حول كيفية تجنب المزالق الشائعة. ينقسم الكتاب إلى أربعة أجزاء: يغطي الجزء الأول المفاهيم والتقنيات الأساسية للإحصاءات المتقاربة، بما في ذلك استخدام التوزيعات المتقاربة ومبرهنة الحد المركزي. يستكشف الجزء الثاني تطبيق الإحصاءات المتقاربة في مواضيع أكثر تقدمًا مثل الاستدلال البايزي واختبار الفرضية. يتعمق الجزء الثالث في الجوانب العملية لاستخدام الإحصاءات المتقاربة في تحليل البيانات في العالم الحقيقي، بما في ذلك استخدام الخوارزميات الحسابية وأهمية تشخيص النماذج. وأخيرا، يناقش الجزء الرابع الاتجاهات المستقبلية للإحصاءات المتقاربة وتطبيقاتها المحتملة في المجالات الناشئة مثل التعلم الآلي وعلوم البيانات. في جميع أنحاء الكتاب، يؤكد المؤلفون على أهمية فهم الافتراضات الأساسية للطرق الإحصائية والحاجة إلى مواصفات نموذجية دقيقة لضمان نتائج دقيقة.

You may also be interested in:

Foundations and Applications of Statistics An Introduction Using R, Second Edition
Mathematical Statistics with Resampling and R (2nd edition)
Linguistic Profiles: Going from Form to Meaning Via Statistics
Business Statistics For Dummies, 2nd Edition
Statistics Slam Dunk: Statistical analysis with R
Statistics in Social Studies (Anniversary Collection)
Statistics for Engineers and Scientists, 6th Edition
Mathematical Statistics with Resampling and R, 3rd Edition
Principles of Statistics (Dover Books on Mathematics)
A Second Course in Statistics Regression Analysis (Eighth Edition)
Unsaturated Soil Mechanics with Probability and Statistics
Algorithmic High-Dimensional Robust Statistics
Statistics for Social Understanding With Stata and SPSS
Applied Statistics Theory and Problem Solutions with R
Bayesian Statistics and Marketing, 2nd Edition
Data Analysis with SPSS: A First Course in Applied Statistics
Probability and Statistics for Machine Learning: A Textbook
Statistics Concepts and Controversies 9th Edition
A Gentle Introduction to Statistics Using SAS Studio
Bayesian Statistics and Marketing, 2nd Edition
Business Statistics For Dummies, 2nd Edition
Basic Business Statistics: Concepts and Applications
Statistics Slam Dunk (MEAP v12)
SPSS Statistics for Data Analysis and Visualization
Introductory Statistics A Problem Solving Approach
Introductory Statistics for the Life and Biomedical Sciences
Statistics in Plain English, 2nd Edition
Demographic Statistics of Hawaii: 1778-1965
Basic Statistics with R Reaching Decisions with Data
Probability and Statistics for Machine Learning A Textbook
Everything Is Predictable: How Bayesian Statistics Explain Our World
Introduction To Research Methods and Statistics in Psychology
Mathematical Statistics with Applications in R, 2nd Edition
An Introduction to Statistics and Data Analysis Using Stata
May Contain Lies: How Stories, Statistics and Studies Exploit Our Biases - And What We Can Do About It
Statistics with Rust 50+ Statistical Techniques Put into Action
Прогнозное моделирование в IBM SPSS Statistics, R и Python
Methodologies and Applications of Computational Statistics for Machine Intelligence
Integrating Federal Statistics on Children: Report of a Workshop
Statistics With R Solving Problems Using Real-World Data