BOOKS - Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvy...
Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey} - Stephanie Zimmer, Rebecca Powell, Isabella Vel?squez 2025 PDF CRC Press BOOKS
1 TON

Views
70456

Telegram
 
Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey}
Author: Stephanie Zimmer, Rebecca Powell, Isabella Vel?squez
Year: 2025
Format: PDF
File size: 63.8 MB
Language: ENG



Pay with Telegram STARS
W. Powers. Book Description: This book provides a comprehensive introduction to survey data analysis using R, focusing on the practical applications of survey research and the importance of understanding complex survey data. It covers the basics of survey design, data collection, and analysis, as well as advanced topics such as weighting, imputation, and regression methods. The author emphasizes the importance of understanding the context of survey research and the need for a personal paradigm for perceiving the technological process of developing modern knowledge. The book begins with an overview of the history of survey research and its relevance to contemporary society, highlighting the importance of surveys in shaping public opinion and policy. It then delves into the technical aspects of survey design, including questionnaire construction, sampling, and data collection methods. The author also discusses the challenges of survey research, such as nonresponse bias and measurement error, and provides strategies for addressing these issues. Once the basics are covered, the book moves on to more advanced topics such as weighting, imputation, and regression methods for analyzing survey data. These techniques are demonstrated through real-world examples, allowing readers to see how they can be applied in practice. The book concludes with a discussion on the future of survey research and the potential for machine learning and artificial intelligence to revolutionize the field.
У. Пауэрс. Эта книга содержит исчерпывающее введение в анализ данных опроса с использованием R, фокусируясь на практическом применении исследований опроса и важности понимания сложных данных опроса. Он охватывает основы проектирования опросов, сбора и анализа данных, а также сложные темы, такие как взвешивание, вменение и методы регрессии. Автор подчеркивает важность понимания контекста опросных исследований и необходимость личностной парадигмы восприятия технологического процесса развития современных знаний. Книга начинается с обзора истории опросных исследований и их актуальности для современного общества, подчёркивая важность опросов в формировании общественного мнения и политики. Затем он углубляется в технические аспекты проектирования изысканий, включая составление вопросника, отбор проб и методы сбора данных. Автор также обсуждает проблемы исследования опроса, такие как смещение без ответа и ошибка измерения, и предоставляет стратегии для решения этих проблем. После изучения основ книга переходит к более продвинутым темам, таким как взвешивание, вменение и методы регрессии для анализа данных опросов. Эти методы демонстрируются на реальных примерах, что позволяет читателям увидеть, как их можно применить на практике. Книга завершается обсуждением будущего опросных исследований и потенциала машинного обучения и искусственного интеллекта для революции в этой области.
''

You may also be interested in:

Network Science with Python: Explore the networks around us using Network Science, Social Network Analysis and Machine Learning
OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis: First International … Notes in Computer Science Book 11041
Smart Data: Systematik zur Analyse von Informationen in Planung, Bau und Betrieb von Immobilien (Schriftenreihe Bauokonomie, 6) (German Edition)
Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2023 (Lecture Notes on Data Engineering and Communications Technologies Book 171)
Python For Beginners. 2 Books in 1: A Completed Guide to Master the Basics of Python Language Programming and Data Science. Learn Coding Fast with Examples and Tips
Palpable Python beat it in 7 days Learn it fast, Use it more Effective Step by Step Practical Programming for Newbies, Introduction Encoding functions Data Science
Spatial Data and Intelligence: 4th International Conference, SpatialDI 2023, Nanchang, China, April 13-15, 2023, Proceedings (Lecture Notes in Computer Science)
Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Techniques, Transform Text Data into Insights, and Build Scalable AI Models with PyTorch 2.0
Learning AI Tools in Tableau Level Up Your Data Analytics and Visualization Capabilities with Tableau Pulse and Tableau Agent
Programming 3 Manuscripts Python Crash Course, Python Machine Learning and Python Data Science for Beginners
Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP
Introduction to Programming with Golang Learn programming, data structures and algorithms using the Go programming language
Computer Programming Crash Course 7 Books in 1- Coding Languages for Beginners C++, C#, SQL, Python, Data Science for Python, Raspberry pi and Arduino. Teach Yourself to Code. Learn Faster
Mastering Java An Effective Project Based Approach including Web Development, Data Structures, GUI Programming and Object Oriented Programming (Beginner to Advanced)
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Recent Developments in Algebra and Analysis: International Conference on Recent Developments in Mathematics, Dubai, 2022 - Volume 1 (Trends in Mathematics)
PYTHON FOR BEGINNERS: A Complete Guide To Learn Programming, Data Science, Machine Learning And Coding Language Which Explain Step By Step Useful Tips And Tricks And Hands-On Exercises
Python programming for beginners 3 books in 1 Beginner|s guide, Data science and Machine learning. Switch from noobgramming to PROgramming in 27 days and bring out your code poet attitude
Hands-on iOS App Development Projects Turn Your Ideas into Actionable, Real-World iOS Apps with Swift, Xcode, UI Kit, Core Data, AWS and OAuth
Nature-Inspired Computing Paradigms in Systems: Reliability, Availability, Maintainability, Safety and Cost (RAMS+C) and Prognostics and Health Management (PHM) (Intelligent Data-Centric Systems)
Computational Data and Social Networks: 9th International Conference, CSoNet 2020, Dallas, TX, USA, December 11-13, 2020, Proceedings (Lecture Notes in Computer Science, 12575)
Mitosis Domain Generalization and Diabetic Retinopathy Analysis: MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, … Notes in Computer Science Book 135
Building Winning Algorithmic Trading Systems: A Trader|s Journey From Data Mining to Monte Carlo Simulation to Live Trading (Wiley Trading)
IoT and Big Data Technologies for Health Care: Second EAI International Conference, IoTCare 2021, Virtual Event, October 18-19, 2021, Proceedings, … and Telecommunications Engineering)
Machine Learning and Computational Intelligence Techniques for Data Engineering: Proceedings of the 4th International Conference MISP 2022, Volume 2 (Lecture Notes in Electrical Engineering Book 998)
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Archeofoss XIV 2020: Open Software, Hardware, Processes, Data and Formats in Archaeological Research: Proceedings of the 14th International Conference, 15-17 October 2020 (English and Italian Edition)
Python for Data Science A Practical Guide to Master Python Programming and System Administration. Discover The Essentials of Machine Learning and Artificial Intelligent Using Python Code
Trading Price Action Trading Ranges Technical Analysis of Price Charts Bar by Bar for the Serious Trader
Python crash course A complete step by step beginner guide for python coding, NumPy, Pandas and Data Visualization
Learn Python Programming Master Programming in Python Language and WORK in Data Science (from beginner to intermediate to advanced)
Computer Programming 4 Books in 1 Data Science, Hacking with Kali Linux, Computer Networking for Beginners, Python Programming
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Handbook of Research on Intelligent Data Processing and Information Security Systems (Advances in Information Security, Privacy, and Ethics)
Hands-on Cloud Analytics with Microsoft Azure Stack Transform Your Data to Derive Powerful Insights Using Microsoft Azure
Spring Boot 3.0 Crash Course Mastering Spring Boot, from Application Development to Advanced Security, Data Access, Integration and Deployment
Learn Enough Python to Be Dangerous: Software Development, Flask Web Apps, and Beginning Data Science with Python (Learn Enough Series)
Systems for Analytics, Data Science, & Artificial Intelligence Systems for Decision Support, 11th Edition, Global Edition
Spring Boot 3.0 Crash Course: Mastering Spring Boot, from Application Development to Advanced Security, Data Access, Integration and Deployment
Spring Boot 3.0 Crash Course Mastering Spring Boot, from Application Development to Advanced Security, Data Access, Integration and Deployment