BOOKS - Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Tech...
Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Techniques, Transform Text Data into Insights, and Build Scalable AI Models with PyTorch 2.0 - Deepti Chopra 2025 EPUB Orange Education Pvt Ltd, AVA BOOKS
1 TON

Views
14121

Telegram
 
Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Techniques, Transform Text Data into Insights, and Build Scalable AI Models with PyTorch 2.0
Author: Deepti Chopra
Year: 2025
Format: EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: Applied Natural Language Processing with PyTorch 20 Master Advanced NLP Techniques Transform Text Data into Insights and Build Scalable AI Models with PyTorch 20 is a comprehensive guide to mastering advanced natural language processing techniques using PyTorch 20. This book covers the latest advancements in NLP research and provides practical examples of how to apply these techniques to real-world problems. The book begins by introducing the fundamentals of NLP and then dives into more complex topics such as text classification, sentiment analysis, named entity recognition, and machine translation. It also covers the use of deep learning models for NLP tasks and provides insights into the future of NLP research. The book is divided into four parts: Part I covers the basics of NLP, including text preprocessing, tokenization, and feature extraction. Part II explores advanced NLP techniques such as topic modeling, text classification, and sentiment analysis. Part III delves into more specialized topics such as named entity recognition and machine translation. Finally, Part IV discusses the future of NLP research and its applications in various industries. Throughout the book, the author provides practical examples of how to implement NLP techniques using PyTorch 20, making it an essential resource for anyone looking to master this powerful toolkit. The book also includes interviews with leading NLP researchers and practitioners, providing valuable insights into the field and its future directions.
Applied Natural Language Processing with PyTorch 20 Master Advanced NLP Techniques Transform Text Data into Insights and Build Scalable AI Models with PyTorch 20 - всеобъемлющее руководство по освоению передовых техник обработки естественного языка с помощью PyTorch 20. Эта книга охватывает последние достижения в области исследований НЛП и содержит практические примеры того, как применять эти методы к реальным проблемам. Книга начинается с введения основ НЛП, а затем погружается в более сложные темы, такие как классификация текста, анализ настроений, распознавание именованных сущностей и машинный перевод. Он также охватывает использование моделей глубокого обучения для задач НЛП и дает представление о будущем исследований НЛП. Книга разделена на четыре части: Часть I охватывает основы НЛП, включая предварительную обработку текста, токенизацию и извлечение признаков. В части II рассматриваются передовые методы НЛП, такие как тематическое моделирование, классификация текста и анализ настроений. Часть III углубляется в более специализированные темы, такие как распознавание именованных сущностей и машинный перевод. Наконец, в части IV обсуждается будущее исследований НЛП и их применение в различных отраслях. На протяжении всей книги автор приводит практические примеры того, как реализовать техники NLP с помощью PyTorch 20, что делает его важным ресурсом для всех, кто хочет освоить этот мощный инструментарий. Книга также включает интервью с ведущими исследователями и практиками НЛП, предоставляя ценную информацию о области и ее будущих направлениях.
''

You may also be interested in:

Applied Natural Language Processing with PyTorch 2.0 Master Advanced NLP Techniques, Transform Text Data into Insights, and Build Scalable AI Models with PyTorch 2.0
Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning
PyTorch for Natural Language Processing Mastery : Build powerful dialogue models with Python
PyTorch for Natural Language Processing Mastery Build powerful dialogue models with Python
PyTorch for Natural Language Processing Mastery Build powerful dialogue models with Python
Applied Natural Language Processing in the Enterprise
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more
Natural Language Processing for Beginners : Advanced Techniques and Applications in Natural Language Processing
Natural Language Processing in the Real World: Text Processing, Analytics, and Classification (Chapman and Hall CRC Data Science Series)
Natural Language Processing with Transformers Building Language Applications with Hugging Face
Natural Language Processing for Beginners Demystifying Language in the Digital Age
Natural Language Processing for Beginners Demystifying Language in the Digital Age
Language Intelligence Expanding Frontiers in Natural Language Processing
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
A Course in Natural Language Processing
A Course in Natural Language Processing
Natural Language Processing
A Course in Natural Language Processing
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Python for Natural Language Processing, 3E
Explainable Natural Language Processing
Introduction to Natural Language Processing
Building Transformer Models with PyTorch 2.0: NLP, computer vision, and speech processing with PyTorch and Hugging Face (English Edition)
Getting Started with Natural Language Processing (MEAP)
Natural Language Processing for Software Engineering
Representation Learning for Natural Language Processing
Discontinuous Constituency (Natural Language Processing, 6)
Natural Language Processing for Corpus Linguistics
Natural Language Processing using R Pocket Primer
Transfer Learning for Natural Language Processing
Natural Language Processing using R Pocket Primer
Foundations of Statistical Natural Language Processing
Getting Started with Natural Language Processing (MEAP)
Natural Language Processing Fundamentals for Developers
Natural Language Processing for Corpus Linguistics
Natural Language Processing And Information Retrieval