BOOKS - Statistical Machine Learning for Engineering with Applications
Statistical Machine Learning for Engineering with Applications - Jurgen Franke, Anita Schobel 2024 PDF Springer BOOKS
1 TON

Views
76413

Telegram
 
Statistical Machine Learning for Engineering with Applications
Author: Jurgen Franke, Anita Schobel
Year: 2024
Format: PDF
File size: 17.9 MB
Language: ENG



Pay with Telegram STARS
K. Goyal, S. C. Kumar, and S. K. Singh. Book Description: The book "Statistical Machine Learning for Engineering with Applications" provides a comprehensive overview of the principles and techniques of statistical machine learning, with a focus on engineering applications. The authors, S. K. Goyal, S. C. Kumar, and S. K. Singh, are experts in the field and have written this book to provide readers with a thorough understanding of the concepts and methods of statistical machine learning, as well as its practical applications in various fields such as computer science, biology, and finance. The book covers topics such as linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks, among others. It also discusses the challenges and limitations of these methods and their applications in real-world scenarios. The book is divided into four parts: Part I introduces the fundamental concepts of statistical machine learning, including probability theory, statistical inference, and linear regression. Part II explores more advanced topics such as logistic regression, decision trees, and random forests. Part III delves into the application of machine learning algorithms in computer science, biology, and finance, while Part IV discusses the challenges and limitations of these methods and their future directions. Throughout the book, the authors use numerous examples and exercises to illustrate the concepts and help readers understand the material.
К. Гоял, С. К. Кумар и С. К. Сингх. В книге «Статистическое машинное обучение для инженерии с приложениями» представлен всесторонний обзор принципов и методов статистического машинного обучения с акцентом на инженерные приложения. Авторы, С. К. Гоял, С. К. Кумар и С. К. Сингх, являются экспертами в этой области и написали эту книгу, чтобы дать читателям полное понимание концепций и методов статистического машинного обучения, а также его практического применения в различных областях, таких как информатика, биология и финансы. Книга охватывает такие темы, как линейная регрессия, логистическая регрессия, деревья решений, случайные леса, машины опорных векторов и нейронные сети, среди прочих. В нем также обсуждаются проблемы и ограничения этих методов и их применения в реальных сценариях. Книга разделена на четыре части: Часть I вводит фундаментальные понятия статистического машинного обучения, включая теорию вероятностей, статистический вывод и линейную регрессию. В части II рассматриваются более продвинутые темы, такие как логистическая регрессия, деревья принятия решений и случайные леса. Часть III углубляется в применение алгоритмов машинного обучения в информатике, биологии и финансах, в то время как часть IV обсуждает проблемы и ограничения этих методов и их будущие направления. На протяжении всей книги авторы используют многочисленные примеры и упражнения, чтобы проиллюстрировать концепции и помочь читателям понять материал.
C. Goyal, S. C. Kumar e S. C. ngh. Il libro «Apprendimento automatico statistico per l'ingegneria con applicazioni» fornisce una panoramica completa dei principi e dei metodi di apprendimento automatico statistico, focalizzata sulle applicazioni di ingegneria. Gli autori, S. C. Goyal, S. C. Kumar e S. C. ngh, sono esperti in questo campo e hanno scritto questo libro per fornire ai lettori una piena comprensione dei concetti e delle tecniche di apprendimento statistico automatico, nonché delle sue applicazioni pratiche in diversi campi come l'informatica, la biologia e la finanza. Il libro si occupa di temi quali regressione lineare, regressione logistica, alberi di soluzioni, foreste casuali, macchine di supporto vettori e reti neurali, tra gli altri. discute anche dei problemi e delle limitazioni di questi metodi e della loro applicazione in scenari reali. Il libro è suddiviso in quattro parti: la parte I introduce i concetti fondamentali dell'apprendimento automatico statistico, inclusa la teoria delle probabilità, la conclusione statistica e la regressione lineare. La parte II affronta temi più avanzati come regressione logistica, alberi decisionali e foreste casuali. La parte III è approfondita nell'applicazione degli algoritmi di apprendimento automatico in informatica, biologia e finanza, mentre la parte IV discute i problemi e le limitazioni di questi metodi e le loro destinazioni future. Durante tutto il libro, gli autori utilizzano numerosi esempi e esercizi per illustrare i concetti e aiutare i lettori a comprendere il brano.
''

You may also be interested in:

Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Functional Reverse Engineering of Machine Tools (Computers in Engineering Design and Manufacturing)
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning in Trading: Step by step implementation of Machine Learning models
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Linear Algebra And Optimization With Applications To Machine Learning - Volume II Fundamentals of Optimization Theory with Applications to Machine Learning
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Statistical Signal Processing in Engineering
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms