BOOKS - Practical Machine Learning Illustrated with KNIME
Practical Machine Learning Illustrated with KNIME - Yu Geng, Qin Li, Geng Yang, Wan Qiu 2024 PDF Springer BOOKS
1 TON

Views
14961

Telegram
 
Practical Machine Learning Illustrated with KNIME
Author: Yu Geng, Qin Li, Geng Yang, Wan Qiu
Year: 2024
Format: PDF
File size: 37.5 MB
Language: ENG



Pay with Telegram STARS
Practical Machine Learning Illustrated with KNIME The world we live in today is constantly evolving, and technology plays a significant role in shaping our future. With the rapid advancement of machine learning, it has become increasingly important to understand the process of technology evolution and its impact on society. The book "Practical Machine Learning Illustrated with KNIME" provides a comprehensive guide to understanding the practical applications of machine learning and its potential to transform our lives. The book begins by exploring the concept of technology evolution and its significance in the modern world. It highlights the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. This section sets the stage for the rest of the book, emphasizing the need to understand the interconnectedness of technology and its role in shaping our future. Part 1: Introduction to Machine Learning The first part of the book provides an introduction to machine learning, covering the fundamental concepts and techniques used in the field.
Практическое машинное обучение Иллюстрировано с KNIME Мир, в котором мы живем сегодня, постоянно развивается, и технологии играют важную роль в формировании нашего будущего. С быстрым развитием машинного обучения становится все более важным понимать процесс эволюции технологий и его влияние на общество. Книга «Practical Machine arning Illustrated with KNIME» предоставляет исчерпывающее руководство по пониманию практических применений машинного обучения и его потенциала для преобразования нашей жизни. Книга начинается с изучения концепции эволюции технологий и ее значения в современном мире. В нем подчеркивается важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания человечества и выживания объединения людей в воюющем государстве. Этот раздел закладывает основу для остальной части книги, подчеркивая необходимость понимания взаимосвязанности технологий и их роли в формировании нашего будущего. Часть 1: Введение в машинное обучение Первая часть книги содержит введение в машинное обучение, охватывающее фундаментальные концепции и методы, используемые в данной области.
''

You may also be interested in:

Practical Machine Learning with R Tutorials and Case Studies
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide
Online Machine Learning A Practical Guide with Examples in Python
Online Machine Learning A Practical Guide with Examples in Python
Applied Machine Learning A practical guide from Novice to Pro
Applied Machine Learning: A practical guide from Novice to Pro.
Practical Machine Learning for Computer Vision (Early Release)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Materials Discovery Numerical Recipes and Practical Applications
Vectorization A Practical Guide to Efficient Implementations of Machine Learning Algorithms
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Practical MLOps Operationalizing Machine Learning Models (Early Release)
Machine Learning for Materials Discovery Numerical Recipes and Practical Applications
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Practical Guide to Machine Learning, NLP, and Generative AI Libraries, Algorithms, and Applications
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Linux Fundamentals A Practical Guide for Data Scientists, Machine Learning Engineers, and IT Professionals
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Practical Time Series Analysis Prediction with Statistics and Machine Learning (Early Release)
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow