BOOKS - PROGRAMMING - Python Machine Learning The Ultimate Guide for Beginners to Mac...
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science - Richard Moore 2019 EPUB | RTF | PDF CONV Amazon Digital Services LLC BOOKS PROGRAMMING
1 TON

Views
95590

Telegram
 
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Author: Richard Moore
Year: 2019
Format: EPUB | RTF | PDF CONV
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python Programming and Deep Learning Artificial Intelligence Neural Networks and Data Science" is a comprehensive guide that provides a detailed overview of machine learning concepts, techniques, and applications using Python programming language. The book covers the basics of machine learning, including supervised and unsupervised learning, deep learning, neural networks, and data science. It also explores the practical aspects of implementing machine learning algorithms using Python libraries such as NumPy, SciPy, and TensorFlow. The book begins by introducing the reader to the fundamentals of machine learning, including the concept of supervised and unsupervised learning, and the importance of data preprocessing in machine learning. It then delves into the details of various machine learning algorithms, such as linear regression, logistic regression, decision trees, random forests, support vector machines, and clustering. The book also covers the basics of deep learning, including the concept of artificial neural networks, backpropagation, and convolutional neural networks. In addition to the theoretical aspects of machine learning, the book also provides practical examples of implementing these algorithms using Python libraries. The book covers topics such as data preprocessing, feature selection, model evaluation, and hyperparameter tuning.
Книга «Python Machine arning The Ultimate Guide for Beginners to Machine arning with Python Programming and Deep arning Artificial Intelligence Neural Networks and Data Science» представляет собой исчерпывающее руководство, в котором представлен подробный обзор концепций, методов и приложений машинного обучения, использующих язык программирования Python. Книга охватывает основы машинного обучения, включая обучение с учителем и без учителя, глубокое обучение, нейронные сети и науку о данных. Также рассматриваются практические аспекты реализации алгоритмов машинного обучения с использованием библиотек Python, таких как NumPy, SciPy и TensorFlow. Книга начинается с ознакомления читателя с основами машинного обучения, включая концепцию контролируемого и неконтролируемого обучения, а также важность предварительной обработки данных в машинном обучении. Затем он углубляется в детали различных алгоритмов машинного обучения, таких как линейная регрессия, логистическая регрессия, деревья решений, случайные леса, машины опорных векторов и кластеризация. Книга также охватывает основы глубокого обучения, включая концепцию искусственных нейронных сетей, обратного распространения и сверточных нейронных сетей. Помимо теоретических аспектов машинного обучения, в книге также приводятся практические примеры реализации этих алгоритмов с помощью библиотек Python. Книга охватывает такие темы, как предварительная обработка данных, выбор признаков, оценка модели и настройка гиперпараметров.
livre « Python Machine arning The Ultimate Guide for Beginners to Machine arning with Python Programming and Deep arning Artificial Intelligence Neural Networks and Data Science » est un guide complet qui présente en détail un aperçu des concepts, des méthodes et des applications d'apprentissage automatique utilisant le langage de programmation Python. livre couvre les bases de l'apprentissage automatique, y compris l'apprentissage avec et sans professeur, l'apprentissage profond, les réseaux neuronaux et la science des données. s aspects pratiques de la mise en œuvre d'algorithmes d'apprentissage automatique utilisant des bibliothèques Python telles que NumPy, SciPy et TensorFlow sont également examinés. livre commence par familiariser le lecteur avec les bases de l'apprentissage automatique, y compris le concept d'apprentissage contrôlé et non contrôlé, ainsi que l'importance du prétraitement des données dans l'apprentissage automatique. Il se penche ensuite sur les détails de divers algorithmes d'apprentissage automatique tels que la régression linéaire, la régression logistique, les arbres de décision, les forêts aléatoires, les machines vectorielles de référence et le regroupement. livre couvre également les bases de l'apprentissage profond, y compris le concept de réseaux neuronaux artificiels, de la propagation inverse et des réseaux neuronaux convolutifs. Outre les aspects théoriques de l'apprentissage automatique, le livre fournit également des exemples pratiques de la mise en œuvre de ces algorithmes à l'aide des bibliothèques Python. livre couvre des sujets tels que le pré-traitement des données, le choix des caractéristiques, l'évaluation du modèle et la configuration des hyperparamètres.
«Python Machine arning The Ultimate Guide for Beginners to Machine arning with Python Programming and Deep arning Artificial Intelligence Neural Nural networks and Data Science» es una guía exhaustiva que ofrece una visión detallada de los conceptos, métodos y aplicaciones de aprendizaje automático que utilizan el lenguaje de programación Python. libro cubre los fundamentos del aprendizaje automático, incluyendo el aprendizaje con y sin profesor, el aprendizaje profundo, las redes neuronales y la ciencia de datos. También se abordan aspectos prácticos de la implementación de algoritmos de aprendizaje automático utilizando bibliotecas Python como NumPy, SciPy y TensorFlow. libro comienza familiarizando al lector con los fundamentos del aprendizaje automático, incluyendo el concepto de aprendizaje controlado e incontrolado, así como la importancia del procesamiento previo de datos en el aprendizaje automático. Luego se profundiza en los detalles de los diferentes algoritmos de aprendizaje automático, como la regresión lineal, la regresión logística, los árboles de decisión, los bosques aleatorios, las máquinas de vectores de referencia y la clusterización. libro también cubre los fundamentos del aprendizaje profundo, incluyendo el concepto de redes neuronales artificiales, propagación inversa y redes neuronales perforadas. Además de los aspectos teóricos del aprendizaje automático, el libro también proporciona ejemplos prácticos de la implementación de estos algoritmos utilizando las bibliotecas Python. libro abarca temas como el pretratamiento de datos, la selección de rasgos, la evaluación del modelo y la configuración de hiperparámetros.
Il libro «Python Machine arning The Ultimate Guide for Beginners to Machine arning with Python Progrming and Deep arning Artigial Intelligence Neurale Networks and Data Science» è un manuale esaustivo che fornisce una panoramica dettagliata dei concetti, dei metodi e delle applicazioni di apprendimento automatico che utilizzano il linguaggio di programmazione Python. Il libro comprende le basi dell'apprendimento automatico, tra cui l'apprendimento con e senza insegnante, l'apprendimento approfondito, le reti neurali e la scienza dei dati. Vengono inoltre esaminati gli aspetti pratici dell'implementazione degli algoritmi di apprendimento automatico utilizzando le librerie Python, come NumPy, SciPy e TensorFlow. Il libro inizia con la conoscenza da parte del lettore delle basi dell'apprendimento automatico, tra cui il concetto di apprendimento controllato e non controllato, e l'importanza della pre-elaborazione dei dati nell'apprendimento automatico. Poi si approfondisce nei dettagli di diversi algoritmi di apprendimento automatico, come regressione lineare, regressione logistica, alberi di soluzioni, foreste casuali, macchine di supporto vettori e clustering. Il libro comprende anche le basi dell'apprendimento approfondito, tra cui il concetto di reti neurali artificiali, la distribuzione inversa e le reti neurali compresse. Oltre agli aspetti teorici dell'apprendimento automatico, il libro fornisce anche esempi pratici di implementazione di questi algoritmi tramite le librerie Python. Il libro comprende argomenti quali la pre-elaborazione dei dati, la selezione dei segni, la valutazione del modello e l'impostazione degli iperparametri.
Das Buch „Python Machine arning The Ultimate Guide for Beginners to Machine arning with Python Programming and Deep arning Artificial Intelligence Neural Networks and Data Science“ ist ein umfassendes Handbuch, das einen detaillierten Überblick über Konzepte und Methoden bietet und Machine-arning-Anwendungen, die die Programmiersprache Python verwenden. Das Buch behandelt die Grundlagen des maschinellen rnens, einschließlich des rnens mit und ohne hrer, Deep arning, neuronale Netze und Datenwissenschaft. Praktische Aspekte der Implementierung von Algorithmen für maschinelles rnen unter Verwendung von Python-Bibliotheken wie NumPy, SciPy und TensorFlow werden ebenfalls behandelt. Das Buch beginnt damit, den ser mit den Grundlagen des maschinellen rnens vertraut zu machen, einschließlich des Konzepts des kontrollierten und unkontrollierten rnens sowie der Bedeutung der Vorverarbeitung von Daten im maschinellen rnen. Es geht dann in die Details der verschiedenen Algorithmen des maschinellen rnens wie lineare Regression, logistische Regression, Entscheidungsbäume, Zufallsgerüste, Support-Vector-Maschinen und Clustering. Das Buch behandelt auch die Grundlagen des Deep arning, einschließlich des Konzepts der künstlichen neuronalen Netze, der Rückwärtsausbreitung und der konvolutionären neuronalen Netze. Neben theoretischen Aspekten des maschinellen rnens bietet das Buch auch praktische Beispiele für die Implementierung dieser Algorithmen mit Python-Bibliotheken. Das Buch behandelt Themen wie Datenvorverarbeitung, Merkmalsauswahl, Modellauswertung und Hyperparametereinstellung.
Python Machine arning the Ultimate Guide for Beginners to Machine arning Witnetwork and Data Science הוא מדריך מקיף המספק סקירה מפורטת של מושגים, שיטות ויישומי למידת מכונה באמצעות שפת התכנות פייתון. הספר מכסה את היסודות של למידת מכונה, כולל למידה מפוקחת ובלתי מפוקחת, למידה עמוקה, רשתות עצביות ומדעי המידע. היבטים מעשיים של יישום אלגוריתמי למידת מכונה באמצעות ספריות פייתון כגון NumPy, SciPy ו-TensorFlow נחשבים אף הם. הספר מתחיל בכך שהוא מציג לקורא את היסודות של למידת מכונה, כולל המושג של למידה מפוקחת ובלתי מבוקרת, והחשיבות של מידע בעיבוד מראש של למידת מכונה. לאחר מכן הוא מתעמק בפרטים של אלגוריתמי למידת מכונה שונים כגון רגרסיה לינארית, רגרסיה לוגיסטית, עצי החלטה, יערות אקראיים, מכונות וקטורים תומכות, וקיבוצים. הספר גם סוקר את יסודות הלמידה העמוקה, כולל מושג רשתות עצביות מלאכותיות, התפשטות לאחור ורשתות עצביות קונבנציונליות. בנוסף להיבטים התאורטיים של למידת מכונה, הספר גם מספק דוגמאות מעשיות ליישום אלגוריתמים אלה באמצעות ספריות פייתון. הספר מכסה נושאים כגון עיבוד נתונים, בחירת תכונה, הערכת מודלים והגדרת היפרפרמטרים.''
Python Machine, Python Programlama ve Derin arning ile Makine arning için Yeni Başlayanlar için Ultimate Kılavuzu Yapay Zeka nir Ağları ve Veri Bilimi, Python programlama dilini kullanarak makine öğrenme kavramları, yöntemleri ve uygulamaları hakkında ayrıntılı bir genel bakış sağlayan kapsamlı bir kılavuzdur. Kitap, denetlenen ve denetlenmeyen öğrenme, derin öğrenme, sinir ağları ve veri bilimi dahil olmak üzere makine öğreniminin temellerini kapsar. NumPy, SciPy ve TensorFlow gibi Python kütüphanelerini kullanarak makine öğrenme algoritmalarının uygulanmasının pratik yönleri de dikkate alınmaktadır. Kitap, okuyucuyu denetimli ve kontrolsüz öğrenme kavramı ve makine öğrenmesinde veri ön işlemenin önemi de dahil olmak üzere makine öğreniminin temelleri ile tanıştırarak başlar. Daha sonra doğrusal regresyon, lojistik regresyon, karar ağaçları, rastgele ormanlar, destek vektör makineleri ve kümeleme gibi çeşitli makine öğrenme algoritmalarının ayrıntılarına girer. Kitap ayrıca yapay sinir ağları, geriye doğru yayılma ve evrişimli sinir ağları kavramı da dahil olmak üzere derin öğrenmenin temellerini kapsar. Makine öğreniminin teorik yönlerine ek olarak, kitap ayrıca Python kütüphanelerini kullanarak bu algoritmaların uygulanmasının pratik örneklerini de sunmaktadır. Kitap, veri ön işleme, özellik seçimi, model değerlendirmesi ve hiper parametrelerin ayarlanması gibi konuları kapsar.
آلة بايثون تحنيط الدليل النهائي للمبتدئين إلى التعلم الآلي مع برمجة بايثون والتعلم العميق الشبكات العصبية للذكاء الاصطناعي وعلوم البيانات هو دليل شامل يقدم نظرة عامة مفصلة لمفاهيم التعلم الآلي وطرقه وتطبيقاته باستخدام لغة برمجة بايثون. يغطي الكتاب أساسيات التعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف، والتعلم العميق، والشبكات العصبية، وعلوم البيانات. كما يتم النظر في الجوانب العملية لتنفيذ خوارزميات التعلم الآلي باستخدام مكتبات بايثون مثل NumPy و SciPy و TensorFlow. يبدأ الكتاب بتعريف القارئ بأساسيات التعلم الآلي، بما في ذلك مفهوم التعلم الخاضع للإشراف وغير المنضبط، وأهمية المعالجة المسبقة للبيانات في التعلم الآلي. ثم يتعمق في تفاصيل خوارزميات التعلم الآلي المختلفة مثل الانحدار الخطي، والانحدار اللوجستي، وأشجار القرار، والغابات العشوائية، وآلات ناقلات الدعم، والتجمع. يغطي الكتاب أيضًا أساسيات التعلم العميق، بما في ذلك مفهوم الشبكات العصبية الاصطناعية، والانتشار الخلفي، والشبكات العصبية التلافيفية. بالإضافة إلى الجوانب النظرية للتعلم الآلي، يقدم الكتاب أيضًا أمثلة عملية لتنفيذ هذه الخوارزميات باستخدام مكتبات بايثون. يغطي الكتاب مواضيع مثل المعالجة المسبقة للبيانات، واختيار الميزات، وتقييم النموذج، وإعداد مقاييس هايبرباراميتر.
파이썬 머신 러닝 파이썬 프로그래밍 및 딥 러닝 인공 지능 신경 네트워크 및 데이터 과학을 통해 머신 러닝을위한 초보자를위한 최고의 안내서는 파이썬 프로그래밍 언어를 사용하여 개념, 방법 및 머신 러닝 응용 프로그램에 대한 자세스 개요. 이 책은 감독 및 감독되지 않은 학습, 딥 러닝, 신경망 및 데이터 과학을 포함한 머신 러닝의 기본 사항을 다룹니다. NumPy, SciPy 및 TensorFlow와 같은 파이썬 라이브러리를 사용하여 머신 러닝 알고리즘을 구현하는 실용적인 측면도 고려됩니다. 이 책은 감독 및 통제되지 않은 학습의 개념과 머신 러닝에서 데이터 사전 처리의 중요성을 포함하여 머신 러닝의 기본 사항을 독자에게 소개하는 것으로 시작합니다. 그런 다음 선형 회귀, 로지스틱 회귀, 의사 결정 트리, 랜덤 포레스트, 지원 벡터 머신 및 클러스터링과 같은 다양한 머신 러닝 알고리즘의 세부 사항을 살펴 봅니다. 이 책은 또한 인공 신경망, 역 전파 및 컨볼 루션 신경망의 개념을 포함하여 딥 러닝의 기본 사항을 다룹니다. 이 책은 머신 러닝의 이론적 측면 외에도 파이썬 라이브러리를 사용하여 이러한 알고리즘을 구현하는 실용적인 예를 제공합니다. 이 책은 데이터 사전 처리, 기능 선택, 모델 평가 및 하이퍼 매개 변수 설정과 같은 주제를 다룹니다.
Python Machine arning Pythonプログラミングとディープラーニングによる機械学習の初心者向けの究極のガイド人工知能ニューラルネットワークとデータサイエンスは、Pythonプログラミング言語を使用した概念、メソッド、および機械学習アプリケーションの詳細な概要を提供する包括的なガイドです。この本は、監督された学習、監視されていない学習、ディープラーニング、ニューラルネットワーク、データサイエンスなど、機械学習の基礎をカバーしています。NumPy、 SciPy、 TensorFlowなどのPythonライブラリを使用して機械学習アルゴリズムを実装する実用的な側面も考慮されます。この本は、監督された学習と制御されていない学習の概念、機械学習におけるデータ前処理の重要性など、機械学習の基本を読者に紹介することから始まります。次に、線形回帰、ロジスティック回帰、意思決定ツリー、ランダムフォレスト、サポートベクターマシン、クラスタリングなど、さまざまな機械学習アルゴリズムの詳細を掘り下げます。また、人工ニューラルネットワークの概念、後方伝播、畳み込みニューラルネットワークなど、ディープラーニングの基礎も網羅しています。機械学習の理論的側面に加えて、本はPythonライブラリを使用してこれらのアルゴリズムを実装する実例も提供しています。データ前処理、フィーチャー選択、モデル評価、ハイパーパラメータの設定などのトピックについて説明しています。
「Python機器學習終極機器學習指南與Python編程和深度學習人工智能神經網絡和數據科學」一書詳盡無遺該指南詳細介紹了使用Python編程語言的機器學習概念,方法和應用程序。該書涵蓋了機器學習的基本知識,包括與老師和非老師一起學習,深度學習,神經網絡和數據科學。還考慮了使用Python庫(例如NumPy,SciPy和TensorFlow)實現機器學習算法的實際方面。本書首先向讀者介紹機器學習的基本知識,包括受控和無監督學習的概念以及機器學習中數據預處理的重要性。然後深入研究各種機器學習算法的細節,例如線性回歸,邏輯回歸,決策樹,隨機森林,參考向量機器和聚類。該書還涵蓋了深度學習的基礎,包括人工神經網絡,反向傳播和卷積神經網絡的概念。除了機器學習的理論方面外,該書還提供了使用Python庫實現這些算法的實際示例。該書涵蓋了諸如數據預處理,特征選擇,模型評估和超參數設置之類的主題。

You may also be interested in:

Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Ultimate Step by Step Guide to Deep Learning Using Python Artificial Intelligence and Neural Network Concepts Explained in Simple Terms (Ultimate Step by Step Guide to Machine Learning Book 2)
PYTHON PROGRAMMING AND MACHINE LEARNING The ultimate guide for beginners to learn Python and mastering the fundamentals of ML + tools and tricks
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Machine Learning with Python The Ultimate Guide for Absolute Beginners with Steps to Implement Artificial Neural Networks with Real Examples (Useful Python Tools eg. Anaconda, Jupiter Notebook)
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python - 2 Books in 1 Python and Machine Learning for Beginners The Ultimate Guide from Beginners to Expert Concepts
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Python Machine Learning The Ultimate Beginners’ Guide for Building Intelligent Systems with Python, Raspberry Pi, and TensorFlow. Includes Practical Step-by-Step Techniques and Exercises
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Python Programming for Beginners The ultimate crash course in Python programming. A comprehensive guide to mastering the powerful programming language and learn machine learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
Python Programming for Intermediates The Ultimate Intermediate|s Guide to Learn Python Programming Step by Step and Master Computer development + machine learning In A Few Days (Vol. 2)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning with Python The Ultimate Updated Beginner’s Guide Showcasing the Use of Artificial Intelligence as the Absolute Tool To Increase Any Business Revenues
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
Python 6 Books in 1 The Ultimate Bible to Learn Python Programming for a Career in Machine Learning, Data Science
Ultimate Step by Step Guide to Machine Learning Using Python Predictive modelling concepts explained in simple terms for beginners
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi