BOOKS - Machine Learning for Industrial Applications
Machine Learning for Industrial Applications - Kolla Bhanu Prakash 2024 PDF Wiley-Scrivener BOOKS
1 TON

Views
45002

Telegram
 
Machine Learning for Industrial Applications
Author: Kolla Bhanu Prakash
Year: 2024
Format: PDF
File size: 18.7 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning for Industrial Applications" provides a comprehensive overview of the current state of machine learning technology and its applications in various industries. The author, a renowned expert in the field, explores the history and evolution of machine learning, from its early beginnings to the present day, highlighting key milestones and breakthroughs that have shaped the technology into what it is today. The book also delves into the inner workings of machine learning algorithms and models, explaining how they work and how they can be applied to real-world problems. The author emphasizes the importance of understanding the process of technological evolution and the need for a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm shift is crucial for the survival of humanity and the unification of people in a warring state. The book argues that by embracing this shift, we can harness the power of machine learning to solve some of the world's most pressing challenges, such as climate change, poverty, and inequality. The book is divided into four parts: Part I provides an overview of machine learning, including its history, key concepts, and applications; Part II delves into the inner workings of machine learning algorithms and models; Part III explores the challenges and limitations of machine learning; and Part IV discusses the future of machine learning and its potential impact on society. Throughout the book, the author uses clear and concise language to make complex concepts accessible to readers, making it an essential resource for anyone looking to understand the power and potential of machine learning.
В книге «Машинное обучение для промышленных приложений» представлен всесторонний обзор современного состояния технологии машинного обучения и ее применения в различных отраслях. Автор, известный эксперт в этой области, исследует историю и эволюцию машинного обучения, начиная с его ранних истоков и до наших дней, выделяя ключевые вехи и прорывы, которые сформировали технологию в то, чем она является сегодня. Книга также углубляется во внутреннюю работу алгоритмов и моделей машинного обучения, объясняя, как они работают и как их можно применить к реальным проблемам. Автор подчеркивает важность понимания процесса технологической эволюции и необходимость личностной парадигмы восприятия технологического процесса развития современного знания. Эта смена парадигмы имеет решающее значение для выживания человечества и объединения людей в воюющем государстве. В книге утверждается, что, приняв этот сдвиг, мы можем использовать силу машинного обучения для решения некоторых из самых насущных мировых проблем, таких как изменение климата, бедность и неравенство. Книга разделена на четыре части: в части I представлен обзор машинного обучения, включая его историю, ключевые концепции и приложения; Часть II углубляется во внутреннюю работу алгоритмов и моделей машинного обучения; В части III рассматриваются проблемы и ограничения машинного обучения; и в части IV обсуждается будущее машинного обучения и его потенциальное влияние на общество. На протяжении всей книги автор использует ясный и лаконичный язык, чтобы сделать сложные концепции доступными для читателей, что делает его важным ресурсом для всех, кто хочет понять силу и потенциал машинного обучения.
''

You may also be interested in:

Applications of Optimization and Machine Learning in Image Processing and IoT
Applications of Deep Machine Learning in Future Energy Systems
Machine Learning for Asset Management New Developments and Financial Applications
Real-Time Cloud Computing and Machine Learning Applications
Cybernetics, Human Cognition, and Machine Learning in Communicative Applications
Data Science and Machine Learning Applications in Subsurface Engineering
Machine Learning and Analytics in Healthcare Systems Principles and Applications
Machine Learning for High-Risk Applications (3d Early Release)
Artificial Intelligence and Machine Learning Applications for Sustainable Development
Python for Machine Learning From Fundamentals to Real-World Applications
Hands On Machine Learning with Python Concepts and Applications for Beginners
Fundamentals of Supervised Machine Learning With Applications in Python, R, and Stata
Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch
Python for Machine Learning: From Fundamentals to Real-World Applications
Building Machine Learning Powered Applications (Early Release)
Blockchain, Big Data and Machine Learning Trends and Applications
Data Science and Machine Learning Applications in Subsurface Engineering
Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications
Machine Learning Refined Foundations, Algorithms and Applications. 2nd Edition
Introduction to Machine Learning with Applications in Information Security 2nd Edition
Machine Learning for Materials Discovery Numerical Recipes and Practical Applications
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Artificial Intelligence and Machine Learning for Smart Community: Concepts and Applications
Handbook of Machine Learning for Computational Optimization Applications and Case Studies
Artificial Intelligence and Machine Learning with R Applications in the Field of Business Analytics
Machine Learning for Materials Discovery Numerical Recipes and Practical Applications
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Fundamentals and Methods of Machine and Deep Learning Algorithms, Tools, and Applications
Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata (Statistics and Computing)
Machine Learning on Geographical Data Using Python: Introduction into Geodata with Applications and Use Cases
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Metaheuristics for Machine Learning: New Advances and Tools (Computational Intelligence Methods and Applications)
Machine Learning and Big data Concepts, Algorithms, Tools and Applications
Machine Learning for Business Analytics: Concepts, Techniques and Applications with JMP Pro
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning
Practical Guide to Machine Learning, NLP, and Generative AI Libraries, Algorithms, and Applications
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs