BOOKS - Quantum Machine Learning Quantum Algorithms and Neural Networks
Quantum Machine Learning Quantum Algorithms and Neural Networks - Pethuru Raj, Houbing Herbert Song, Dac-Nhuong Le, Narayan Vyas 2024 PDF | EPUB De Gruyter BOOKS
1 TON

Views
98167

Telegram
 
Quantum Machine Learning Quantum Algorithms and Neural Networks
Author: Pethuru Raj, Houbing Herbert Song, Dac-Nhuong Le, Narayan Vyas
Year: 2024
Format: PDF | EPUB
File size: 34.5 MB
Language: ENG



Pay with Telegram STARS
Quantum Machine Learning Quantum Algorithms and Neural Networks The book "Quantum Machine Learning Quantum Algorithms and Neural Networks" is a groundbreaking work that explores the intersection of quantum computing, machine learning, and neural networks. It provides a comprehensive overview of the current state of research in these fields, highlighting the latest advancements and their potential applications. The author, a renowned expert in the field, delves into the fundamental principles of quantum mechanics and their implications for machine learning and neural networks. The book begins by discussing the basics of quantum computing, including the principles of superposition, entanglement, and quantum parallelism. These concepts are essential to understanding how quantum computers can solve complex problems differently than classical computers. The author then delves into the specifics of quantum algorithms, such as Shor's algorithm and Grover's algorithm, which have revolutionized the field of cryptography and search engines. The second part of the book focuses on the application of quantum machine learning to neural networks. The author explains how quantum computers can be used to train neural networks more efficiently and accurately than classical computers. This section covers topics such as quantum-inspired neural networks, quantum-accelerated training, and quantum-enhanced feature selection. In the final section, the author examines the challenges and limitations of quantum machine learning, including noise and error correction, and discusses the future outlook for this rapidly evolving field.
Квантовое машинное обучение Квантовые алгоритмы и нейронные сети Книга «Квантовое машинное обучение Квантовые алгоритмы и нейронные сети» - это новаторская работа, в которой исследуется пересечение квантовых вычислений, машинного обучения и нейронных сетей. Он предоставляет всесторонний обзор текущего состояния исследований в этих областях, освещая последние достижения и их потенциальные применения. Автор, известный эксперт в этой области, углубляется в фундаментальные принципы квантовой механики и их значение для машинного обучения и нейронных сетей. Книга начинается с обсуждения основ квантовых вычислений, включая принципы суперпозиции, запутанности и квантового параллелизма. Эти понятия необходимы для понимания того, как квантовые компьютеры могут решать сложные задачи иначе, чем классические компьютеры. Затем автор углубляется в специфику квантовых алгоритмов, таких как алгоритм Шора и алгоритм Гровера, которые произвели революцию в области криптографии и поисковых систем. Вторая часть книги посвящена применению квантового машинного обучения к нейронным сетям. Автор объясняет, как квантовые компьютеры можно использовать для обучения нейронных сетей более эффективно и точно, чем классические компьютеры. В этом разделе рассматриваются такие темы, как нейронные сети с квантовым вдохновением, обучение с квантовым ускорением и квантово-расширенный выбор функций. В заключительном разделе автор рассматривает проблемы и ограничения квантового машинного обучения, включая шум и исправление ошибок, и обсуждает перспективы на будущее для этой быстро развивающейся области.
''

You may also be interested in:

Machine Learning and Big data Concepts, Algorithms, Tools and Applications
Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms
Practical Guide to Machine Learning, NLP, and Generative AI Libraries, Algorithms, and Applications
Genetic Algorithms and Machine Learning for Programmers Create AI Models and Evolve Solutions
Machine Learning for Signal Processing Data Science, Algorithms, and Computational Statistics
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle computer vision and machine learning with the newest tools, techniques and algorithms
Learning and Robust Control in Quantum Technology (Communications and Control Engineering)
A Primer to the 42 Most commonly used Machine Learning Algorithms (With Code Samples). (Artificial Intelligence Book 1)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
The Quantum Gate Trilogy (Quantum Gate #1-3)
The Quantum Curators and the Enemy Within (The Quantum Curators #2)
Machine Learning The Ultimate Beginners Guide For Neural Networks, Algorithms, Random Forests and Decision Trees Made Simple
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Mastering OpenCV with Python Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery: A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Mastering OpenCV with Python: Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects (English Edition)
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis