BOOKS - Machine Learning with Noisy Labels Definitions, Theory, Techniques and Soluti...
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions - Gustavo Carneiro 2024 EPUB Academic Press/Elsevier BOOKS
1 TON

Views
71219

Telegram
 
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Author: Gustavo Carneiro
Year: 2024
Format: EPUB
File size: 43.5 MB
Language: ENG



Pay with Telegram STARS
Machine Learning with Noisy Labels: Definitions, Theory, Techniques, and Solutions The book "Machine Learning with Noisy Labels" provides a comprehensive overview of the challenges and solutions for dealing with noisy labels in machine learning. The author, Yaser Sheikh, is a renowned expert in the field of computer vision and machine learning, and this book offers a thorough understanding of the various definitions, theories, techniques, and solutions for addressing noisy labels in machine learning. The book begins by defining what noisy labels are and their impact on machine learning algorithms. It explains how noisy labels can lead to biased models that perpetuate errors, resulting in poor performance and incorrect predictions. The author then delves into the theoretical foundations of machine learning with noisy labels, discussing the underlying principles and mathematical formulations that govern the process. The book covers several techniques for dealing with noisy labels, including noise-tolerant loss functions, robust optimization methods, and ensemble learning approaches. These techniques are presented in a clear and concise manner, making it easy for readers to understand and apply them in real-world applications. Additionally, the book explores the limitations and trade-offs of each technique, providing a balanced perspective on their effectiveness.
Машинное обучение с шумными метками: определения, теория, методы и решения В книге «Машинное обучение с шумными метками» представлен всесторонний обзор проблем и решений для работы с шумными метками в машинном обучении. Автор, Ясер Шейх, является известным экспертом в области компьютерного зрения и машинного обучения, и эта книга предлагает полное понимание различных определений, теорий, методов и решений для обращения к шумным меткам в машинном обучении. Книга начинается с определения того, что такое шумные метки и их влияние на алгоритмы машинного обучения. Он объясняет, как шумные этикетки могут привести к предвзятым моделям, которые увековечивают ошибки, что приводит к низкой производительности и неверным прогнозам. Затем автор углубляется в теоретические основы машинного обучения с шумными метками, обсуждая основополагающие принципы и математические формулировки, управляющие процессом. Книга охватывает несколько техник работы с шумными метками, включая функции потери, устойчивые к шуму, надежные методы оптимизации и подходы к обучению ансамблей. Эти методы представлены в ясной и сжатой форме, что позволяет читателям легко понимать и применять их в реальных приложениях. Кроме того, книга исследует ограничения и компромиссы каждой техники, обеспечивая сбалансированный взгляд на их эффективность.
''

You may also be interested in:

Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning