BOOKS - Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficient...
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps - Saurabh D. Dorle 2024 PDF | EPUB Orange Education Pvt Ltd, AVA BOOKS
1 TON

Views
92076

Telegram
 
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Author: Saurabh D. Dorle
Year: 2024
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Ultimate MLOps for Machine Learning Models" by Michael A. Hugues, published by Packt Publishing, provides a comprehensive guide to implementing MLOps in machine learning pipelines. The author emphasizes the importance of understanding the technological process of developing modern knowledge as the basis for the survival of humanity and the unity of people in a warring state. The book focuses on real-world case studies to demonstrate practical applications of MLOps and its benefits in building, deploying, and scaling machine learning models. The first chapter, "Introduction to MLOps provides an overview of the field and its significance in the development of machine learning models. The author highlights the need for a systematic approach to managing the entire lifecycle of machine learning models, from inception to deployment and maintenance. This chapter also introduces the concept of the "MLOps cycle which consists of four stages: plan, build, deploy, and maintain. In the second chapter, "Planning and Designing Your MLOps Pipeline the author discusses the importance of planning and designing an MLOps pipeline before implementation. This includes identifying the goals and objectives of the project, selecting the appropriate technology stack, and defining the roles and responsibilities of team members. The author also emphasizes the need for version control and documentation throughout the development process.
Книга «Ultimate MLOps for Machine arning Models» Майкла А. Хьюга, опубликованная Packt Publishing, содержит исчерпывающее руководство по внедрению MLOps в конвейеры машинного обучения. Автор подчеркивает важность понимания технологического процесса развития современного знания как основы выживания человечества и единства людей в воюющем государстве. Книга фокусируется на реальных тематических исследованиях, чтобы продемонстрировать практическое применение MLOps и его преимущества в создании, развертывании и масштабировании моделей машинного обучения. Первая глава, "Введение в MLOps, дает обзор области и ее значения в разработке моделей машинного обучения. Автор подчеркивает необходимость системного подхода к управлению всем жизненным циклом моделей машинного обучения, от создания до развертывания и обслуживания. В этой главе также представлена концепция "цикла MLOps, который состоит из четырех этапов: планирование, создание, развертывание и поддержка. Во второй главе «Планирование и проектирование трубопровода MLOps» автор обсуждает важность планирования и проектирования трубопровода MLOps перед внедрением. Сюда входит определение целей и задач проекта, выбор соответствующего технологического стека и определение ролей и обязанностей членов группы. Автор также подчеркивает необходимость контроля версий и документации на протяжении всего процесса разработки.
''

You may also be interested in:

Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Practical MLOps Operationalizing Machine Learning Models
Practical MLOps Operationalizing Machine Learning Models (Early Release)
Mastering MLOps Architecture From Code to Deployment Manage the production cycle of continual learning ML models with MLOps
Mastering MLOps Architecture From Code to Deployment Manage the production cycle of continual learning ML models with MLOps
Mastering MLOps Architecture: From Code to Deployment: Manage the production cycle of continual learning ML models with MLOps (English Edition)
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Introducing MLOps How to Scale Machine Learning in the Enterprise
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
MLOps with Ray Best Practices and Strategies for Adopting Machine Learning Operations
MLOps with Ray Best Practices and Strategies for Adopting Machine Learning Operations
MLOps with Ray: Best Practices and Strategies for Adopting Machine Learning Operations
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Machine Learning Upgrade A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Machine Learning Upgrade A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Continuous Machine Learning with Kubeflow Performing Reliable MLOps with Capabilities of TFX, Sagemaker and Kubernetes
Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps
Machine Learning Design Patterns Solutions to Common Challenges in Data Preparation, Model Building, and MLOps, First Edition
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j