BOOKS - Machine Learning For Network Traffic and Video Quality Analysis Develop and D...
Machine Learning For Network Traffic and Video Quality Analysis Develop and Deploy Applications Using javascript and Node.js - Tulsi Pawan Fowdur, Lavesh Babooram 2024 PDF Apress BOOKS
1 TON

Views
73111

Telegram
 
Machine Learning For Network Traffic and Video Quality Analysis Develop and Deploy Applications Using javascript and Node.js
Author: Tulsi Pawan Fowdur, Lavesh Babooram
Year: 2024
Format: PDF
File size: 15.1 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning for Network Traffic and Video Quality Analysis" provides a comprehensive overview of the latest advancements in machine learning techniques and their applications in network traffic and video quality analysis. The book covers the fundamental concepts of machine learning and its practical applications in various fields, including computer vision, natural language processing, and deep learning. It also delves into the technical aspects of implementing machine learning algorithms in JavaScript and Node. js, making it an ideal resource for developers and researchers looking to explore the potential of machine learning in their projects. The book begins by introducing the reader to the basics of machine learning, including supervised and unsupervised learning, neural networks, and deep learning. It then moves on to discuss the importance of network traffic analysis and video quality assessment, highlighting the challenges that arise in these areas and how machine learning can be used to overcome them. The author presents a detailed explanation of the most commonly used machine learning algorithms, such as decision trees, support vector machines, and neural networks, and their applications in network traffic and video quality analysis. The book also covers the practical aspects of implementing machine learning algorithms in JavaScript and Node. js, providing readers with a solid understanding of how to develop and deploy applications using these technologies.
В книге «Машинное обучение для анализа качества сетевого трафика и видео» представлен всесторонний обзор последних достижений в технике машинного обучения и их применения в анализе качества сетевого трафика и видео. Книга охватывает фундаментальные концепции машинного обучения и его практические применения в различных областях, включая компьютерное зрение, обработку естественного языка и глубокое обучение. Он также углубляется в технические аспекты реализации алгоритмов машинного обучения в JavaScript и Node. js, что делает его идеальным ресурсом для разработчиков и исследователей, которые хотят изучить потенциал машинного обучения в своих проектах. Книга начинается с знакомства читателя с основами машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение. Затем он переходит к обсуждению важности анализа сетевого трафика и оценки качества видео, подчеркивая проблемы, возникающие в этих областях, и то, как машинное обучение может быть использовано для их преодоления. Автор представляет подробное объяснение наиболее часто используемых алгоритмов машинного обучения, таких как деревья решений, машины опорных векторов и нейронные сети, и их приложений в сетевом трафике и анализе качества видео. Книга также освещает практические аспекты реализации алгоритмов машинного обучения в JavaScript и Node. js, предоставляя читателям четкое представление о том, как разрабатывать и развертывать приложения с использованием этих технологий.
''

You may also be interested in:

Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Quantum Machine Learning Thinking and Exploration in Neural Network Models for Quantum Science and Quantum Computing
Quantum Machine Learning Thinking and Exploration in Neural Network Models for Quantum Science and Quantum Computing
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R