BOOKS - Analyzing Baseball Data with R, 3rd Edition
Analyzing Baseball Data with R, 3rd Edition - Jim Albert, Benjamin S. Baumer, Max Marchi 2025 PDF CRC Press BOOKS
1 TON

Views
35253

Telegram
 
Analyzing Baseball Data with R, 3rd Edition
Author: Jim Albert, Benjamin S. Baumer, Max Marchi
Year: 2025
Format: PDF
File size: 33.3 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Analyzing Baseball Data with R 3rd Edition' is a comprehensive guide to using R to analyze baseball data. The book covers the basics of R programming, data manipulation, visualization, statistical analysis, and modeling techniques to help readers gain insights from baseball data. It provides practical examples and exercises throughout the book to help readers apply their newfound skills to real-world datasets. The book begins by introducing the fundamentals of R programming and data manipulation before diving into more advanced topics such as statistical modeling and data visualization. Readers will learn how to import and clean data, perform basic statistical analyses, create visualizations, and build models to better understand player and team performance. The book also covers advanced topics such as time series analysis, spatial analysis, and machine learning techniques to help readers take their analysis to the next level. With the rise of advanced analytics in baseball, this book provides readers with the tools they need to stay competitive in the industry. The book is written for anyone interested in analyzing baseball data, from beginner R users to experienced analysts looking to expand their skillset. The authors provide clear explanations and examples to make the material accessible to readers with varying levels of experience.
'Analyzing Baseball Data with R 3rd Edition'- всеобъемлющее руководство по использованию R для анализа бейсбольных данных. Книга охватывает основы программирования R, манипуляции с данными, визуализацию, статистический анализ и методы моделирования, чтобы помочь читателям получить представление о бейсбольных данных. Он предоставляет практические примеры и упражнения на протяжении всей книги, чтобы помочь читателям применить свои новообретенные навыки к реальным наборам данных. Книга начинается с введения основ программирования R и манипулирования данными, прежде чем погрузиться в более продвинутые темы, такие как статистическое моделирование и визуализация данных. Читатели узнают, как импортировать и очищать данные, выполнять базовый статистический анализ, создавать визуализации и строить модели для лучшего понимания производительности игроков и команд. Книга также охватывает такие продвинутые темы, как анализ временных рядов, пространственный анализ и методы машинного обучения, чтобы помочь читателям вывести свой анализ на новый уровень. С ростом продвинутой аналитики в бейсболе эта книга предоставляет читателям инструменты, необходимые для сохранения конкурентоспособности в отрасли. Книга написана для всех, кто интересуется анализом бейсбольных данных, от начинающих пользователей R до опытных аналитиков, желающих расширить свой набор навыков. Авторы дают четкие объяснения и примеры, чтобы сделать материал доступным для читателей с различным уровнем опыта.
''

You may also be interested in:

Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis
Baseball and Bondage
The Baseball 100
Little Baseball (Little Sports)
Fantasy Baseball
Baseball Strategies
Baseball Lover
Unique Methods for Analyzing Failures and Catastrophic Events A Practical Guide for Engineers
Distributed Tracing in Practice Instrumenting, Analyzing, and Debugging Microservices (Early Release)
Principles of Big data Preparing, Sharing, and Analyzing Complex Information
Composite-Based Structural Equation Modeling Analyzing Latent and Emergent Variables
Analyzing Opera: Verdi and Wagner (California Studies in 19th-Century Music)
Evasive Malware A Field Guide to Detecting, Analyzing, and Defeating Advanced Threats
Analyzing Collapse The Rise and Fall of the Old Kingdom (The Auc History of Ancient Egypt)
Natural Language Processing in Action Understanding, analyzing, and generating text with Python
Evasive Malware A Field Guide to Detecting, Analyzing, and Defeating Advanced Threats
Analyzing Social Media Networks with NodeXL Insights from a Connected World Second Edition
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Hands On With Google Data Studio A Data Citizen|s Survival Guide
Azure Data Factory by Example Practical Implementation for Data Engineers, 2nd Edition
IBM Cloud Pak for Data: An enterprise platform to operationalize data, analytics, and AI
Unifying Business, Data, and Code: Designing Data Products With Json Schema
Big Data in Astronomy Scientific Data Processing for Advanced Radio Telescopes
Data Analytics for Absolute Beginners A Deconstructed Guide to Data Literacy, Second Edition
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data
Explainable Machine Learning for Geospatial Data Analysis A Data-Centric Approach
Practical Synthetic Data Generation Balancing Privacy and the Broad Availability of Data
Data Smart Using Data Science to Transform Information into Insight, 2nd Edition
Becoming a Data Head How to Think, Speak, and Understand Data Science, Statistics, and Machine Learning
Data in Context: Models as Enablers for Managing and Using Data (The Enterprise Engineering Series)
Analytics in a Big Data World The Essential Guide to Data Science and its Applications
Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python
Cloud Data Center Network Architectures and Technologies (Data Communication Series)
Confident Data Skills Master the Fundamentals of Working with Data and Supercharge Your Career
Streaming Data Mesh: A Model for Optimizing Real-Time Data Services
Data Engineering with AWS: A Comprehensive Guide to Building Robust Data Pipelines
Integrity Constraints on Rich Data Types (Synthesis Lectures on Data Management)
Real-Time Data Analytics for Large Scale Sensor Data Volume Six
Introducing Data Science Big data, machine learning, and more, using Python tools