BOOKS - OS AND DB - Data Quality Engineering in Financial Services Applying Manufactu...
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data - Brian Buzzelli 2022 EPUB O’Reilly Media BOOKS OS AND DB
1 TON

Views
37391

Telegram
 
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data
Author: Brian Buzzelli
Year: 2022
Format: EPUB
File size: 10 MB
Language: ENG



Pay with Telegram STARS
Book Description: Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data Author: Brian Buzzelli 2022 470 O’Reilly Media Summary: In today's fast-paced digital world, data quality plays a critical role in determining the success or failure of financial services organizations. With the increasing use of advanced technologies, the importance of data quality has become even more pronounced. This book "Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data" by Brian Buzzelli provides a comprehensive guide to understanding the significance of data quality and its impact on the financial sector. The author emphasizes the need for data analysts, data scientists, and other data practitioners to adopt manufacturing techniques to ensure precise data quality tolerances at the datum level. The book begins with an introduction to the concept of data quality engineering and its relevance to the financial industry. It highlights the consequences of poor data quality, such as missed opportunities, lost clients, and financial disasters. The author then delves into the principles of manufacturing techniques and their application to data management. The book covers the following topics: 1.
Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data Author: Brian Buzzelli 2022 470 O'Reilly Media Резюме: В современном быстро развивающемся цифровом мире качество данных играет решающую роль в определении успеха или провала организаций, предоставляющих финансовые услуги. С ростом использования передовых технологий важность качества данных стала еще более выраженной. В этой книге Брайана Буццелли «Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data» приводится исчерпывающее руководство по пониманию значимости качества данных и его влияния на финансовый сектор. Автор подчеркивает необходимость для аналитиков данных, специалистов по анализу данных и других специалистов по обработке данных применять методы производства для обеспечения точных допусков качества данных на уровне базы данных. Книга начинается с введения в концепцию инженерии качества данных и ее актуальности для финансовой отрасли. В нем освещаются последствия низкого качества данных, такие как упущенные возможности, потерянные клиенты и финансовые катастрофы. Затем автор углубляется в принципы производственных методик и их применение к управлению данными. Книга охватывает следующие темы: 1.
Data Quality Engineering in Financial Services : Appliing Manufacturing Technics to Data Author : Brian Buzzelli 2022 470 O'Reilly Media Résumé : Dans le monde numérique en évolution rapide d'aujourd'hui, la qualité des données joue un rôle crucial dans la détermination du succès ou de l'échec des organismes de financement les services. Avec l'utilisation croissante des technologies de pointe, l'importance de la qualité des données est devenue encore plus prononcée. Ce livre de Brian Buzzelli, Data Quality Engineering in Financial Services : Appliing Manufacturing Techniques to Data, fournit un guide complet pour comprendre l'importance de la qualité des données et son impact sur le secteur financier. L'auteur souligne la nécessité pour les analystes de données, les analystes de données et les autres professionnels du traitement des données d'appliquer des méthodes de production pour garantir des tolérances précises de qualité des données au niveau de la base de données. livre commence par une introduction au concept d'ingénierie de la qualité des données et de sa pertinence pour l'industrie financière. Il met en lumière les conséquences de la mauvaise qualité des données, telles que les occasions manquées, les pertes de clients et les catastrophes financières. L'auteur approfondit ensuite les principes des méthodes de production et leur application à la gestion des données. livre couvre les sujets suivants : 1.
Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data Author: Brian Buzzelli 2022 470 O'Reilly Media Resumen: En el mundo digital en rápida evolución, la calidad de los datos es fundamental para determinar el éxito o el fracaso de las organizaciones de servicios financieros. Con el creciente uso de tecnologías avanzadas, la importancia de la calidad de los datos se ha vuelto aún más pronunciada. Este libro de Brian Buzzelli, «Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data», proporciona una guía exhaustiva para entender la importancia de la calidad de los datos y su impacto en el sector financiero. autor subraya la necesidad de que los analistas de datos, los analistas de datos y otros procesadores de datos apliquen métodos de producción para garantizar tolerancias precisas de la calidad de los datos a nivel de la base de datos. libro comienza con una introducción al concepto de ingeniería de calidad de datos y su relevancia para la industria financiera. Destaca los efectos de la mala calidad de los datos, como las oportunidades perdidas, los clientes perdidos y los desastres financieros. A continuación, el autor profundiza en los principios de las técnicas de producción y su aplicación a la gestión de datos. libro cubre los siguientes temas: 1.
Data Quality Engineering in Financial Services: Applying Manufacturing Technologies to Data Author: Brian Buzzelli 2022 470 O'Reilly Media Curriculum: In un mondo digitale in continua evoluzione, la qualità dei dati è fondamentale per determinare il successo o il fallimento delle organizzazioni che forniscono servizi finanziari. Con l'aumento dell'utilizzo di tecnologie avanzate, la qualità dei dati è diventata ancora più importante. Questo libro di Brian Buzzelli, «Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data», fornisce una guida completa per comprendere l'importanza dei dati e l'impatto sul settore finanziario. L'autore sottolinea la necessità per gli analisti di dati, gli esperti di analisi dei dati e altri esperti di elaborazione di utilizzare i metodi di produzione per garantire una precisa tolleranza dei dati a livello di database. Il libro inizia introducendo nel concetto di ingegneria la qualità dei dati e la sua rilevanza per il settore finanziario. Evidenzia le conseguenze della scarsa qualità dei dati, come le opportunità perse, i clienti persi e i disastri finanziari. L'autore approfondisce le metodologie di produzione e la loro applicazione alla gestione dei dati. Il libro comprende i seguenti argomenti: 1.
Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data Autor: Brian Buzzelli 2022 470 O'Reilly Media Zusammenfassung: In der heutigen schnelllebigen digitalen Welt spielt die Datenqualität eine entscheidende Rolle für den Erfolg oder Misserfolg von Finanzdienstleistern. Mit dem zunehmenden Einsatz fortschrittlicher Technologien ist die Bedeutung der Datenqualität noch ausgeprägter geworden. Dieses Buch von Brian Buzzelli, Data Quality Engineering in Financial Services: Applying Manufacturing Techniques to Data, bietet eine umfassende Anleitung zum Verständnis der Bedeutung der Datenqualität und ihrer Auswirkungen auf den Finanzsektor. Der Autor betont die Notwendigkeit für Datenanalysten, Data Scientists und andere Data Scientists, Produktionsmethoden anzuwenden, um genaue Toleranzen der Datenqualität auf Datenbankebene sicherzustellen. Das Buch beginnt mit einer Einführung in das Konzept des Data Quality Engineering und seiner Relevanz für die Finanzindustrie. Es beleuchtet die Auswirkungen schlechter Datenqualität wie verpasste Chancen, verlorene Kunden und finanzielle Katastrophen. Der Autor geht dann auf die Prinzipien der Produktionsmethoden und deren Anwendung auf das Datenmanagement ein. Das Buch behandelt folgende Themen: 1.
Data Quality Engineering in Financial Services: Limpling Manufacturing Technics to Data Writer: Brian Buzzelli 20220470 או Oreilly Media Summary). עם השימוש ההולך וגובר בטכנולוגיות מתקדמות, חשיבותה של איכות המידע הלכה וגברה. ספר זה, Data Quality Engineering in Financial Services: Applaying Manufacturing Technics to Data Brian Buzzelli, מספק מדריך מקיף להבנת המשמעות של איכות המידע והשפעתה על המגזר הפיננסי. המחבר מדגיש את הצורך של מנתחי נתונים, מדעני נתונים ומדעני נתונים אחרים ליישם שיטות ייצור כדי להבטיח סובלנות לאיכות נתונים מדויקת ברמת מסד הנתונים. הספר מתחיל עם הקדמה לרעיון של הנדסת איכות נתונים ורלוונטיות לתעשייה הפיננסית. הוא מדגיש את ההשלכות של איכות נתונים ירודה, כמו הזדמנויות שלא נענו, לקוחות אבודים ואסונות כלכליים. ואז הסופר מתעמק בעקרונות של שיטות ייצור ויישומם לניהול נתונים. הספר מכסה את הנושאים הבאים: 1.''
Finansal Hizmetlerde Veri Kalitesi Mühendisliği: Üretim Tekniklerinin Verilere Uygulanması Yazar: Brian Buzzelli 2022 470 O'Reilly Medya Özet: Günümüzün hızla gelişen dijital dünyasında, veri kalitesi finansal hizmet kuruluşlarının başarısını veya başarısızlığını belirlemede kritik bir rol oynamaktadır. Gelişmiş teknolojilerin kullanımının artmasıyla birlikte, veri kalitesinin önemi daha da belirginleşmiştir. Bu kitap, Finansal Hizmetlerde Veri Kalitesi Mühendisliği: Brian Buzzelli tarafından Verilere Üretim Tekniklerinin Uygulanması, veri kalitesinin önemini ve finansal sektör üzerindeki etkisini anlamak için kapsamlı bir rehber sunmaktadır. Yazar, veri analistlerinin, veri bilimcilerinin ve diğer veri bilimcilerinin, veritabanı düzeyinde doğru veri kalitesi toleranslarını sağlamak için üretim tekniklerini uygulama ihtiyacını vurgulamaktadır. Kitap, veri kalitesi mühendisliği kavramına ve bunun finans endüstrisi ile olan ilgisine bir giriş ile başlıyor. Kaçırılan fırsatlar, kaybedilen müşteriler ve finansal felaketler gibi düşük veri kalitesinin sonuçlarını vurgular. Daha sonra yazar, üretim yöntemlerinin ilkelerini ve bunların veri yönetimine uygulanmasını araştırır. Kitap şu konuları kapsamaktadır: 1.
هندسة جودة البيانات في الخدمات المالية: تطبيق تقنيات التصنيع على مؤلف البيانات: Brian Buzzelli 2022 470 O'Reilly Media Summary: في عالم اليوم الرقمي سريع التطور، تلعب جودة البيانات دورًا مهمًا في تحديد نجاح أو فشل مؤسسات الخدمات المالية. مع الاستخدام المتزايد للتكنولوجيات المتقدمة، أصبحت أهمية جودة البيانات أكثر وضوحًا. يقدم هذا الكتاب، هندسة جودة البيانات في الخدمات المالية: تطبيق تقنيات التصنيع على البيانات بقلم بريان بوزيلي، دليلاً شاملاً لفهم أهمية جودة البيانات وتأثيرها على القطاع المالي. يسلط المؤلف الضوء على الحاجة إلى محللي البيانات وعلماء البيانات وعلماء البيانات الآخرين لتطبيق تقنيات التصنيع لضمان تحمل دقيق لجودة البيانات على مستوى قاعدة البيانات. يبدأ الكتاب بمقدمة لمفهوم هندسة جودة البيانات وصلتها بالصناعة المالية. يسلط الضوء على عواقب جودة البيانات الرديئة، مثل الفرص الضائعة والعملاء المفقودين والكوارث المالية. ثم يتعمق المؤلف في مبادئ أساليب الإنتاج وتطبيقها على إدارة البيانات. يغطي الكتاب المواضيع التالية: 1.
금융 서비스의 데이터 품질 엔지니어링: 제조 기술을 데이터 저자에게 적용: Brian Buzzelli 2022 470 O'Reilly 미디어 요약: 오늘날 빠르게 진화하는 디지털 세계에서 데이터 품질은 금융 서비스 조직의 성공 또는 실패를 결정하는. 첨단 기술의 사용이 증가함에 따라 데이터 품질의 중요성이 더욱 두드러졌습니다. Brian Buzzelli의 금융 서비스 데이터 품질 엔지니어링: 데이터에 제조 기술을 적용하는이 책은 데이터 품질의 중요성과 금융 부문에 미치는 영향을 이해하기위한 포괄적 인 안내서를 제공합니다. 저자는 데이터 분석가, 데이터 과학자 및 기타 데이터 과학자가 데이터베이스 수준에서 정확한 데이터 품질 공차를 보장하기 위해 제조 기술을 적용 할 필요성 이 책은 데이터 품질 공학 개념과 금융 산업과의 관련성에 대한 소개로 시작됩니다. 기회 누락, 고객 손실 및 재정 재난과 같은 데이터 품질 저하의 결과를 강조합니다. 그런 다음 저자는 생산 방법의 원칙과 데이터 관리에 적용하는 방법을 탐구합니다. 이 책은 다음 주제를 다룹니다. 1.
金融サービスにおけるデータ品質エンジニアリング:製造技術をデータに適用する著者:Brian Buzzelli 2022 470 O'Reilly Media要約:今日急速に進化するデジタル世界では、データ品質は金融サービス組織の成功または失敗を決定する上で重要な役割を果たしています。高度な技術の使用が増加するにつれて、データ品質の重要性はさらに顕著になりました。Brian Buzzelliによる「金融サービスにおけるデータ品質エンジニアリング:製造技術をデータに適用する」という本は、データ品質の重要性と金融セクターへの影響を理解するための包括的なガイドを提供しています。著者は、データアナリスト、データサイエンティスト、その他のデータサイエンティストが、データベースレベルで正確なデータ品質公差を確保するために製造技術を適用する必要性を強調しています。本書は、データ品質工学の概念と金融業界との関連性の紹介から始まります。これは、機会を逃した、顧客を失った、金融災害などのデータ品質の低下の結果を強調しています。それから著者はデータ管理への生産方法そして適用の原則を掘り下げます。本は次のトピックをカバーしています:1。
金融服務中的數據質量工程:應用制造技術到數據管理局:Brian Buzzelli 2022470 O'Reilly Media摘要:在當今快速發展的數字世界中,數據質量在確定提供金融服務的組織的成功或失敗中起著至關重要的作用。隨著先進技術的日益普及,數據質量的重要性變得更加突出。布萊恩·布澤利(Brian Butzelli)的著作《金融服務中的數據質量工程:應用制造技術到數據》提供了全面的指南,以了解數據質量的重要性及其對金融部門的影響。作者強調,數據分析人員、數據分析人員和其他數據處理人員需要采用生產方法,以確保數據庫層面的準確數據質量公差。本書首先介紹了工程學中的數據質量及其與金融業的相關性。它強調了數據質量差的影響,例如錯失機會,失去客戶和財務災難。然後深入研究生產方法原理及其在數據管理中的應用。該書涵蓋以下主題:1。

You may also be interested in:

Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data
Financial Data Engineering Design and Build Data-Driven Financial Products
Financial Data Engineering Design and Build Data-Driven Financial Products
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
End-to-End Quality of Service over Cellular Networks Data Services Performance Optimization in 2G/3G
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
A First Course in Quality Engineering Integrating Statistical and Management Methods of Quality, Third Edition
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Modernizing Financial Regulation (Financial Institutuions and Services)
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Fuzzy Data Matching with SQL Enhancing Data Quality and Query Performance
Automating Data Quality Monitoring: Going Deeper Than Data Observability
Azure Data Engineering Cookbook: Get well versed in various data engineering techniques in Azure using this recipe-based guide, 2nd Edition
Practical Python Data Wrangling and Data Quality
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Streaming Data Mesh: A Model for Optimizing Real-Time Data Services
Data as a Service A Framework for Providing Reusable Enterprise Data Services
Simulating Conversations for the Prediction of Speech Quality (T-Labs Series in Telecommunication Services)
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
A Guide to Software Quality Engineering
A Guide to Software Quality Engineering
A Proposed Framework for Integration of Quality Performance Measures for Health Literacy, Cultural Competence, and Language Access Services: Proceedings of a Workshop
Financial Markets and Services
Data Quality Fundamentals
Data Quality Fundamentals
Data Engineering with AWS: A Comprehensive Guide to Building Robust Data Pipelines
Data in Context: Models as Enablers for Managing and Using Data (The Enterprise Engineering Series)
Fundamentals of Data Engineering: Plan and Build Robust Data Systems
Total Quality Management in Human Service Organizations (SAGE Human Services Guides)
Reliability Engineering and Services
Hands on Azure Data Studio Microsoft|s Open Platform for Data Engineering and Analytics
Artificial Intelligence in the Financial Services Industry