BOOKS - Big Data Analytics Theory, Techniques, Platforms, and Applications
Big Data Analytics Theory, Techniques, Platforms, and Applications - Umit Demirbaga, Gagangeet Singh Aujla, Anish Jindal 2024 PDF | EPUB Springer BOOKS
1 TON

Views
39143

Telegram
 
Big Data Analytics Theory, Techniques, Platforms, and Applications
Author: Umit Demirbaga, Gagangeet Singh Aujla, Anish Jindal
Year: 2024
Format: PDF | EPUB
File size: 39.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Big Data Analytics Theory Techniques Platforms and Applications' is a comprehensive guide that provides insights into the latest trends, techniques, and applications of big data analytics. The book covers the fundamental concepts, theories, and methodologies of big data analytics, including data mining, machine learning, and data visualization. It also explores the current state-of-the-art platforms and tools used in big data analytics, such as Hadoop, Spark, and NoSQL databases. Additionally, the book delves into real-world applications of big data analytics in various industries, including healthcare, finance, and retail. The book begins by discussing the evolution of technology and its impact on society, highlighting the need to develop a personal paradigm for understanding the technological process of developing modern knowledge. This paradigm is essential for survival in a warring world, where the ability to adapt and evolve is crucial. The author emphasizes the importance of studying and understanding the process of technology evolution to stay ahead of the curve and remain relevant in the ever-changing landscape of big data analytics. The book then delves into the fundamentals of big data analytics, explaining the concept of big data and its significance in today's data-driven world. It covers the different types of big data, including structured, semi-structured, and unstructured data, and their unique characteristics and challenges. The author also discusses the role of data mining and machine learning in big data analytics, providing insights into the latest techniques and methodologies used in these fields.
«Платформы и приложения для теории аналитики больших данных» - это всеобъемлющее руководство, в котором представлены последние тенденции, методы и приложения для аналитики больших данных. Книга охватывает фундаментальные концепции, теории и методологии аналитики больших данных, включая интеллектуальный анализ данных, машинное обучение и визуализацию данных. В нем также рассматриваются современные платформы и инструменты, используемые в аналитике больших данных, такие как базы данных Hadoop, Spark и NoSQL. Кроме того, книга углубляется в реальные приложения аналитики больших данных в различных отраслях, включая здравоохранение, финансы и розничную торговлю. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчёркивая необходимость выработки личностной парадигмы понимания технологического процесса развития современных знаний. Эта парадигма необходима для выживания в воюющем мире, где способность адаптироваться и развиваться имеет решающее значение. Автор подчеркивает важность изучения и понимания процесса эволюции технологий, чтобы оставаться на опережение и сохранять актуальность в постоянно меняющемся ландшафте аналитики больших данных. Затем книга углубляется в основы аналитики больших данных, объясняя концепцию больших данных и их значение в современном мире, управляемом данными. Она охватывает различные типы больших данных, включая структурированные, полуструктурированные и неструктурированные данные, а также их уникальные характеристики и проблемы. Автор также обсуждает роль интеллектуального анализа данных и машинного обучения в аналитике больших данных, предоставляя информацию о новейших методах и методологиях, используемых в этих областях.
''

You may also be interested in:

DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Ultimate Azure Synapse Analytics Unlock the Full Potential of Azure Synapse Analytics to Seamlessly Integrate, Analyze, and Optimize Complex Data for Enhanced Business Insights and Decision-Making
Ultimate Azure Synapse Analytics Unlock the Full Potential of Azure Synapse Analytics to Seamlessly Integrate, Analyze, and Optimize Complex Data for Enhanced Business Insights and Decision-Making
Stream Analytics with Microsoft Azure Real-time data processing for quick insights using Azure Stream Analytics
Data Analytics Using Splunk 9.x: A practical guide to implementing Splunk|s features for performing data analysis at scale
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
Python Data Science How to Learn Step by Step Programming, Data Analytics, and Coding Essentials Tools
Introduction to the Theory of the Early Universe Hot Big Bang Theory 2nd Edition
Ultimate Azure Synapse Analytics: Unlock the Full Potential of Azure Synapse Analytics to Seamlessly Integrate, Analyze, and Optimize Complex Data for … and Decision-Making (English Edition)
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Querying SQL Server. Run T-SQL Operations, Data Extraction, Data Manipulation, and Custom Queries to Deliver Simplified analytics
Data Analytics with SAS: Explore your data and get actionable insights with the power of SAS (English Edition)
The Modern Business Data Analyst: A Case Study Introduction into Business Data Analytics with CRISP-DM and R
Practical Lakehouse Architecture Designing and Implementing Modern Data Platforms at Scale (Final Release)
Practical Lakehouse Architecture Designing and Implementing Modern Data Platforms at Scale (Final Release)
Big Data, Big Design Why Designers Should Care about Artificial Intelligence
Big data Understanding How Data Powers Big Business
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Big Data in Astronomy Scientific Data Processing for Advanced Radio Telescopes
Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Introducing Data Science Big data, machine learning, and more, using Python tools
The Visual Organization Data Visualization, Big Data, and the Quest for Better Decisions
Data and AI Driving Smart Cities (Studies in Big Data, 128)
Practical Lakehouse Architecture Designing and Implementing Modern Data Platforms at Scale (5th Early Release)
Getting Started with Elastic Stack 8.0: Run powerful and scalable data platforms to search, observe, and secure your organization
Practical Lakehouse Architecture Designing and Implementing Modern Data Platforms at Scale (5th Early Release)
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Humanizing Big Data: Marketing at the Meeting of Data, Social Science and Consumer Insight
Big Data, Small Devices Investigating the Natural World Using Real-Time Data
Data Analytics with SAS Explore your data and get actionable insights with the power of SAS
Data Analytics with SAS Explore your data and get actionable insights with the power of SAS
Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter
Handbook of Research on Big Data and the IoT (Advances in Data Mining and Database Management (ADMDM))
Data-Centric Security in Software Defined Networks (SDN) (Studies in Big Data, 149)
Sharing Big Data Safely Managing Data Security
Data Visualization and Statistical Literacy for Open and Big Data
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Final)
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data