BOOKS - Microservices for Machine Learning Design, implement, and manage high-perform...
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices - Rohit Ranjan 2024 PDF | EPUB | MOBI BPB Publications BOOKS
3 TON

Views
87020

Telegram
 
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Author: Rohit Ranjan
Year: 2024
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Designing and managing high-performance machine learning (ML) systems is a complex task that requires a deep understanding of various technologies and their interplay. The book "Microservices for Machine Learning" provides a comprehensive guide to designing, implementing, and managing such systems using microservices architecture. This approach allows for breaking down the overall system into smaller, independent components, each responsible for a specific task, making it easier to maintain, scale, and evolve over time. The book covers the entire lifecycle of an ML system, from conceptualization to deployment and maintenance, and provides practical advice on how to navigate the rapidly changing landscape of ML technology. It emphasizes the importance of understanding the underlying principles of ML and the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book is divided into four parts: Part I provides an overview of ML systems and their importance in today's technology landscape, while Part II delves into the details of designing and implementing microservices for ML. Part III discusses the challenges of deploying and maintaining ML systems in production environments, and Part IV offers guidance on how to evolve and adapt to new technologies and trends.
Проектирование и управление высокопроизводительными системами машинного обучения (ML) является сложной задачей, требующей глубокого понимания различных технологий и их взаимодействия. Книга «Микросервисы для машинного обучения» содержит исчерпывающее руководство по проектированию, внедрению и управлению такими системами с использованием архитектуры микросервисов. Такой подход позволяет разбивать всю систему на более мелкие, независимые компоненты, каждый из которых отвечает за конкретную задачу, что облегчает ее обслуживание, масштабирование и развитие с течением времени. Книга охватывает весь жизненный цикл ML-системы, от концептуализации до развертывания и обслуживания, и содержит практические советы о том, как ориентироваться в быстро меняющейся среде ML-технологии. В ней подчеркивается важность понимания основополагающих принципов МИ и необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга разделена на четыре части: в части I представлен обзор ML-систем и их важности в современном технологическом ландшафте, а в части II - подробности проектирования и внедрения микросервисов для ML. В части III обсуждаются проблемы развертывания и обслуживания ML-систем в производственных средах, а в части IV предлагаются рекомендации по развитию и адаптации к новым технологиям и тенденциям.
''

You may also be interested in:

Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Building Modern Serverless Web APIs Develop Microservices and Implement Serverless Applications with .NET Core 3.1
Artificial Intelligence and Machine Learning in Drug Design and Development (Fintech in a Sustainable Digital Society)
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Design and Deploy Microsoft Defender for IoT: Leveraging Cloud-based Analytics and Machine Learning Capabilities
Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python