BOOKS - Microservices for Machine Learning Design, implement, and manage high-perform...
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices - Rohit Ranjan 2024 PDF | EPUB | MOBI BPB Publications BOOKS
3 TON

Views
87019

Telegram
 
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Author: Rohit Ranjan
Year: 2024
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Designing and managing high-performance machine learning (ML) systems is a complex task that requires a deep understanding of various technologies and their interplay. The book "Microservices for Machine Learning" provides a comprehensive guide to designing, implementing, and managing such systems using microservices architecture. This approach allows for breaking down the overall system into smaller, independent components, each responsible for a specific task, making it easier to maintain, scale, and evolve over time. The book covers the entire lifecycle of an ML system, from conceptualization to deployment and maintenance, and provides practical advice on how to navigate the rapidly changing landscape of ML technology. It emphasizes the importance of understanding the underlying principles of ML and the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. The book is divided into four parts: Part I provides an overview of ML systems and their importance in today's technology landscape, while Part II delves into the details of designing and implementing microservices for ML. Part III discusses the challenges of deploying and maintaining ML systems in production environments, and Part IV offers guidance on how to evolve and adapt to new technologies and trends.
Проектирование и управление высокопроизводительными системами машинного обучения (ML) является сложной задачей, требующей глубокого понимания различных технологий и их взаимодействия. Книга «Микросервисы для машинного обучения» содержит исчерпывающее руководство по проектированию, внедрению и управлению такими системами с использованием архитектуры микросервисов. Такой подход позволяет разбивать всю систему на более мелкие, независимые компоненты, каждый из которых отвечает за конкретную задачу, что облегчает ее обслуживание, масштабирование и развитие с течением времени. Книга охватывает весь жизненный цикл ML-системы, от концептуализации до развертывания и обслуживания, и содержит практические советы о том, как ориентироваться в быстро меняющейся среде ML-технологии. В ней подчеркивается важность понимания основополагающих принципов МИ и необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Книга разделена на четыре части: в части I представлен обзор ML-систем и их важности в современном технологическом ландшафте, а в части II - подробности проектирования и внедрения микросервисов для ML. В части III обсуждаются проблемы развертывания и обслуживания ML-систем в производственных средах, а в части IV предлагаются рекомендации по развитию и адаптации к новым технологиям и тенденциям.
''

You may also be interested in:

Machine Learning Design Patterns Solutions to Common Challenges in Data Preparation, Model Building, and MLOps, First Edition
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Machine Learning System Design With end-to-end examples (Final Release)
Machine Learning System Design With end-to-end examples (MEAP v4)
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning