BOOKS - PROGRAMMING - Machine Learning for Business How to Build Artificial Intellige...
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining - Finley Peters 2020 PDF | RTF | EPUB Amazon.com Services LLC BOOKS PROGRAMMING
3 TON

Views
59199

Telegram
 
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Author: Finley Peters
Year: 2020
Format: PDF | RTF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Machine Learning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing exponentially every day. With the amount of data being generated, it has become imperative for businesses to leverage this data to make informed decisions and gain a competitive edge. This is where Machine Learning (ML) comes into the picture. ML is a subset of Artificial Intelligence (AI) that enables computers to learn from data without being explicitly programmed. It has revolutionized the way businesses operate, making it possible to automate tasks, improve customer experiences, and drive innovation. As a result, there is a growing demand for professionals who understand the concepts and applications of ML. The purpose of this book is to provide a comprehensive guide to ML, covering its fundamental concepts, algorithms, analysis, and data mining techniques.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. С учетом объема генерируемых данных компаниям стало крайне важно использовать эти данные для принятия обоснованных решений и получения конкурентного преимущества. Здесь в картину вступает машинное обучение (ML). ML - это подмножество искусственного интеллекта (AI), которое позволяет компьютерам учиться на данных без их явного программирования. Это революционизировало методы работы компаний, позволив автоматизировать задачи, улучшить качество обслуживания клиентов и стимулировать инновации. В результате растет спрос на профессионалов, разбирающихся в концепциях и приложениях ML. Цель этой книги - предоставить исчерпывающее руководство по ML, охватывающее его фундаментальные концепции, алгоритмы, анализ и методы интеллектуального анализа данных.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. Compte tenu de la quantité de données générées, il est devenu essentiel pour les entreprises d'utiliser ces données pour prendre des décisions éclairées et obtenir un avantage concurrentiel. Ici, l'apprentissage automatique (ML) entre dans la peinture. ML est un sous-ensemble de l'intelligence artificielle (AI) qui permet aux ordinateurs d'apprendre des données sans les programmer explicitement. Cela a révolutionné les méthodes de travail des entreprises, ce qui a permis d'automatiser les tâches, d'améliorer la qualité du service à la clientèle et de stimuler l'innovation. En conséquence, la demande augmente pour les professionnels qui comprennent les concepts et les applications ML. L'objectif de ce livre est de fournir un guide complet de ML couvrant ses concepts fondamentaux, algorithmes, analyses et méthodes d'exploration de données.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. Dada la cantidad de datos que se generan, es fundamental que las empresas utilicen estos datos para tomar decisiones informadas y obtener una ventaja competitiva. Aquí entra en el cuadro el aprendizaje automático (ML). ML es un subconjunto de inteligencia artificial (IA) que permite a los ordenadores aprender de los datos sin programarlos explícitamente. Esto revolucionó los métodos de trabajo de las empresas, permitiendo la automatización de tareas, mejorando la calidad del servicio al cliente y estimulando la innovación. Como resultado, hay una creciente demanda de profesionales versados en conceptos y aplicaciones de ML. objetivo de este libro es proporcionar una guía exhaustiva sobre ML que abarque sus conceptos fundamentales, algoritmos, análisis y técnicas de minería de datos.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. Tendo em conta a quantidade de dados gerados, é fundamental que as empresas utilizem esses dados para tomar decisões razoáveis e obter vantagens competitivas. Aqui entra o aprendizado de máquina (ML). O ML é um subconjunto de inteligência artificial (AI) que permite aos computadores aprender com dados sem sua programação explícita. Isso revolucionou os métodos de trabalho das empresas, permitindo automatizar tarefas, melhorar a qualidade do serviço ao cliente e estimular a inovação. O resultado é uma demanda crescente por profissionais que conhecem conceitos e aplicativos ML. O objetivo deste livro é fornecer um guia completo de ML que abrange seus conceitos fundamentais, algoritmos, análises e métodos de análise inteligente de dados.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. Data la quantità di dati generati, è fondamentale che le aziende utilizzino questi dati per prendere decisioni ragionevoli e ottenere vantaggi competitivi. Qui entra l'apprendimento automatico (ML). ML è un sottoinsieme di intelligenza artificiale (AI) che permette ai computer di imparare dai dati senza programmarli esplicitamente. Questo ha rivoluzionato le modalità di lavoro delle aziende, consentendo di automatizzare gli obiettivi, migliorare la qualità del servizio clienti e stimolare l'innovazione. Di conseguenza, cresce la domanda di professionisti che conoscono i concetti e le applicazioni ML. Lo scopo di questo libro è fornire una guida completa su ML che comprende i suoi concetti fondamentali, algoritmi, analisi e metodi di analisi intelligente dei dati.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day. Angesichts der Menge der erzeugten Daten ist es für Unternehmen entscheidend geworden, diese Daten zu nutzen, um fundierte Entscheidungen zu treffen und sich einen Wettbewerbsvorteil zu verschaffen. Hier kommt Machine arning (ML) ins Spiel. ML ist eine Teilmenge der künstlichen Intelligenz (KI), die es Computern ermöglicht, aus Daten zu lernen, ohne sie explizit zu programmieren. Dies hat die Arbeitsweise von Unternehmen revolutioniert und es ermöglicht, Aufgaben zu automatisieren, das Kundenerlebnis zu verbessern und Innovationen voranzutreiben. Infolgedessen steigt die Nachfrage nach Fachleuten, die ML-Konzepte und -Anwendungen verstehen. Das Ziel dieses Buches ist es, einen umfassenden itfaden für ML zu bieten, der seine grundlegenden Konzepte, Algorithmen, Analysen und Methoden des Data Mining umfasst.
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorytmy Analiza i Data Mining Wprowadzenie: W dzisiejszym świecie dane są wszędzie i rośnie znacznie evary dzień. Biorąc pod uwagę wielkość generowanych danych, kluczowe dla przedsiębiorstw stało się wykorzystanie tych danych do podejmowania świadomych decyzji i uzyskania przewagi konkurencyjnej. Tutaj do obrazu wchodzi uczenie maszynowe (ML). ML to podzbiór sztucznej inteligencji (AI), który pozwala komputerom uczyć się od danych bez ich jednoznacznego programowania. Zrewolucjonizowało to sposób funkcjonowania firm, pozwalając na zautomatyzowanie zadań, ulepszanie doświadczenia klienta oraz napędzanie innowacji. W rezultacie rośnie zapotrzebowanie na specjalistów, którzy rozumieją koncepcje i zastosowania ML. Celem książki jest dostarczenie kompleksowego przewodnika po ML, obejmującego jego podstawowe koncepcje, algorytmy, analizy i techniki eksploracji danych.
Book Machine arning for Business - How to Build Artifical Intelligence Through Concepts of Statistics Algorithms Analyms and Data Introduction: בעולם של ימינו, נתונים נמצאים בכל מקום. בהתחשב בנפח המידע שנוצר, זה הפך להיות קריטי עבור חברות להשתמש בנתונים אלה כדי לקבל החלטות מושכלות ולזכות ביתרון תחרותי. כאן נכנסת לתמונה למידת מכונה (ML). ML היא תת-קבוצה של בינה מלאכותית המאפשרת למחשבים ללמוד מנתונים מבלי לתכנת אותם במפורש. הדבר חולל מהפכה באופן שבו חברות פועלות, מאפשר לבצע משימות אוטומטיות, לחוות את חוויית הלקוח להיות משופרת, ולחדשנות להיות מונעת. כתוצאה מכך, יש ביקוש הולך וגדל למקצוענים שמבינים מושגי ML ויישומים. מטרת הספר היא לספק מדריך מקיף ל-ML, המסקר את מושגי היסוד שלו, אלגוריתמים, אנליזה וטכניקות כריית נתונים.''
Book Machine arning for Business - İstatistik Kavramları ile Yapay Zeka Nasıl Oluşturulur Algoritmalar Analiz ve Veri Madenciliği Giriş: Günümüz dünyasında, veri her yerdedir ve her geçen gün daha da büyümektedir. Üretilen veri hacmi göz önüne alındığında, şirketlerin bu verileri bilinçli kararlar almak ve rekabet avantajı elde etmek için kullanmaları kritik hale gelmiştir. Makine öğreniminin (ML) resme girdiği yer burasıdır. ML, bilgisayarların açıkça programlamadan verilerden öğrenmelerini sağlayan bir yapay zeka (AI) alt kümesidir. Bu, şirketlerin çalışma biçiminde devrim yarattı, görevlerin otomatikleştirilmesine, müşteri deneyiminin geliştirilmesine ve inovasyonun yönlendirilmesine izin verdi. Sonuç olarak, ML kavramlarını ve uygulamalarını anlayan profesyoneller için artan bir talep vardır. Bu kitabın amacı, temel kavramları, algoritmaları, analizi ve veri madenciliği tekniklerini kapsayan kapsamlı bir ML kılavuzu sağlamaktır.
Book Machine arning for Business - How to Build Attributic Intelligence with Concepts of Statistics Algorithms Analysis and Data Morly، وهي تنمو بشكل مستمر. نظرًا لحجم البيانات المتولدة، أصبح من الأهمية بمكان للشركات استخدام هذه البيانات لاتخاذ قرارات مستنيرة واكتساب ميزة تنافسية. هذا هو المكان الذي يدخل فيه التعلم الآلي (ML) الصورة. ML هي مجموعة فرعية من الذكاء الاصطناعي (AI) تسمح لأجهزة الكمبيوتر بالتعلم من البيانات دون برمجتها صراحة. أحدث هذا ثورة في الطريقة التي تعمل بها الشركات، مما سمح بأتمتة المهام، وتحسين تجربة العملاء، وقيادة الابتكار. ونتيجة لذلك، هناك طلب متزايد على المهنيين الذين يفهمون مفاهيم وتطبيقات ML. الغرض من هذا الكتاب هو توفير دليل شامل لـ ML، يغطي مفاهيمه الأساسية والخوارزميات والتحليل وتقنيات التنقيب عن البيانات.
비즈니스를위한 도서 기계 학습-통계 알고리즘 분석 및 데이터 마이닝 소개 개념을 통해 인공 지능을 구축하는 방법: 오늘날의 세계에서 데이터는 어디에나 있으며 기대가 커지고 있습니다. 생성 된 데이터의 양을 감안할 때 회사는이 데이터를 사용하여 정보에 입각 한 결정을 내리고 경쟁 우위를 확보하는 것이 중요해졌습니다. 여기서 머신 러닝 (ML) 이 그림에 들어갑니다. ML은 컴퓨터가 명시 적으로 프로그래밍하지 않고도 데이터를 통해 학습 할 수있는 인공 지능 (AI) 의 하위 집합입니다 이는 회사 운영 방식에 혁명을 일으켜 작업 자동화, 고객 경험 개선 및 혁신 추진을 가능하게했습니다. 결과적으로 ML 개념과 응용 프로그램을 이해하는 전문가에 대한 수요가 증가하고 있습니다. 이 책의 목적은 기본 개념, 알고리즘, 분석 및 데이터 마이닝 기술을 다루는 ML에 대한 포괄적 인 안내서를 제공하는 것입니다.
Book Machine arning for Business-統計アルゴリズム分析とデータマイニングの概念を通じて人工知能を構築する方法はじめに:今日の世界では、データはどこでもあり、それは急激に均等な日に成長しています。生成されたデータの量を考えると、企業がこのデータを使用して情報に基づいた意思決定を行い、競争上の優位性を得ることが重要になっています。ここで機械学習(ML)が絵に入る。MLは人工知能(AI)のサブセットで、明示的にプログラミングすることなく、コンピュータがデータから学習できるようにします。これは企業の業務運営に革命をもたらし、タスクの自動化、カスタマーエクスペリエンスの向上、イノベーションの推進を可能にしました。その結果、MLの概念やアプリケーションを理解する専門家の需要が高まっています。本書の目的は、その基本的な概念、アルゴリズム、分析、データマイニング技術を網羅した総合的なMLガイドを提供することです。
Book Machine arning for Business - How to Build Artificial Intelligence through Concepts of Statistics Algorithms Analysis and Data Mining Introduction: In today's world, data is everywhere, and it's growing expectively evary day.鑒於所產生的數據數量,公司必須利用這些數據作出知情的決定並獲得競爭優勢。在這裏,機器學習(ML)進入圖片。ML是人工智能(AI)的子集,它允許計算機在沒有明確編程的情況下從數據中學習。這徹底改變了公司的工作方法,使任務自動化,改善客戶服務質量並推動創新。結果,對精通ML概念和應用程序的專業人員的需求不斷增長。本書的目的是提供有關ML的詳盡指南,涵蓋其基本概念,算法,分析和數據挖掘方法。

You may also be interested in:

Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Power BI Machine Learning and OpenAI: Explore data through business intelligence, predictive analytics, and text generation
Machine Learning for Business How to Build Artificial Intelligence through Concepts of Statistics, Algorithms, Analysis, and Data Mining
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected Data (9th Early Release)
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected Data (10th Early Release)
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Machine Learning with Python The Ultimate Updated Beginner’s Guide Showcasing the Use of Artificial Intelligence as the Absolute Tool To Increase Any Business Revenues
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Machine Learning For Beginners Complete AI for Beginners with Real-world Business Applications
Artificial Intelligence and Machine Learning for Business for Non-Engineers (Technology for Non-Engineers)
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Getting Started with Machine Learning in the Cloud Using Cloud-Based Platforms to Discover New Business Insights
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python