BOOKS - Neural Networks for Algo Trading with MQL5
Neural Networks for Algo Trading with MQL5 - Dmitriy Gizlyk  PDF  BOOKS
2 TON

Views
13624

Telegram
 
Neural Networks for Algo Trading with MQL5
Author: Dmitriy Gizlyk
Format: PDF
File size: PDF 8.7 MB
Language: English



Pay with Telegram STARS
The book begins by introducing the basic principles of neural networks, explaining how they work and why they are so effective at solving complex problems like those encountered in algorithmic trading. It then delves into more advanced topics such as attention mechanisms and architectural solutions that improve model convergence. You'll learn how to use different types of neural networks, including convolutional and recurrent models, and how to integrate them into the MQL5 environment.
Книга начинается с введения основных принципов работы нейронных сетей, объяснения того, как они работают и почему они так эффективны при решении сложных задач, подобных тем, которые встречаются в алгоритмической торговле. Затем он углубляется в более продвинутые темы, такие как механизмы внимания и архитектурные решения, которые улучшают сходимость модели. Вы узнаете, как использовать различные типы нейронных сетей, включая сверточные и рекуррентные модели, и как интегрировать их в MQL5 среду.
livre commence en introduisant les principes de base du fonctionnement des réseaux neuronaux, en expliquant comment ils fonctionnent et pourquoi ils sont si efficaces pour résoudre des problèmes complexes comme ceux que l'on trouve dans le commerce algorithmique. Il s'oriente ensuite vers des thèmes plus avancés tels que les mécanismes d'attention et les solutions architecturales qui améliorent la convergence du modèle. Vous apprendrez comment utiliser différents types de réseaux neuronaux, y compris les modèles convolutifs et récurrents, et comment les intégrer dans un environnement MQL5.
libro comienza con la introducción de los principios básicos del funcionamiento de las redes neuronales, la explicación de cómo funcionan y por qué son tan eficaces para resolver problemas complejos como los que se encuentran en el comercio algorítmico. Luego se profundiza en temas más avanzados como los mecanismos de atención y las soluciones arquitectónicas que mejoran la convergencia del modelo. Aprenderá a usar diferentes tipos de redes neuronales, incluyendo modelos de perforación y recurración, y cómo integrarlos en un entorno MQL5.
O livro começa introduzindo os princípios básicos das redes neurais, explicando como elas funcionam e por que elas são tão eficazes em tarefas complexas como as encontradas no comércio algoritmico. Depois, aprofundou-se em temas mais avançados, como mecanismos de atenção e soluções arquitetônicas que melhoram a convergência do modelo. Você vai aprender como usar diferentes tipos de redes neurais, incluindo modelos de recorrentes e recorrentes, e como integrá-los ao ambiente MQL5.
Il libro inizia introducendo i principi di base delle reti neurali, spiegando come funzionano e perché sono così efficaci per affrontare sfide complesse come quelle del commercio algoritmico. Poi si approfondisce su temi più avanzati, come meccanismi di attenzione e soluzioni architettoniche che migliorano la convergenza del modello. Imparerete come utilizzare diversi tipi di reti neurali, tra cui modelli compressi e ricurrenti, e come integrarli nell'ambiente MQL5.
Das Buch beginnt mit einer Einführung in die Grundprinzipien der Funktionsweise neuronaler Netze, einer Erklärung, wie sie funktionieren und warum sie bei der Lösung komplexer Probleme, wie sie im algorithmischen Handel auftreten, so effektiv sind. Es geht dann tiefer in fortgeschrittenere Themen wie Aufmerksamkeitsmechanismen und architektonische Lösungen, die die Konvergenz des Modells verbessern. e lernen, wie e verschiedene Arten von neuronalen Netzen verwenden, einschließlich Faltungs- und Rekursionsmodellen, und wie e sie in eine MQL5 Umgebung integrieren.
Książka rozpoczyna się od wprowadzenia podstawowych zasad działania sieci neuronowych, wyjaśnienia, jak one działają i dlaczego są one tak skuteczne w rozwiązywaniu złożonych problemów, takich jak te znalezione w handlu algorytmicznym. Następnie zagłębia się w bardziej zaawansowane tematy, takie jak mechanizmy uwagi i rozwiązania architektoniczne poprawiające konwergencję modeli. Dowiesz się, jak korzystać z różnych typów sieci neuronowych, w tym konwolucyjnych i powtarzających się modeli oraz jak zintegrować je ze środowiskiem MQL5.
הספר מתחיל בכך שהוא מציג את העקרונות הבסיסיים של איך רשתות עצביות פועלות, ומסביר כיצד הן עובדות ומדוע הן יעילות כל כך בפתרון בעיות מורכבות כמו אלו הנמצאות במסחר אלגוריתמי. לאחר מכן הוא מתעמק בנושאים מתקדמים יותר כגון מנגנוני קשב ופתרונות ארכיטקטוניים המשפרים את התכנסות המודל. תלמדו איך להשתמש בסוגים שונים של רשתות עצביות, כולל מודלים קונבנציונליים וחוזרים ונשנים, ואיך לשלב אותם בסביבה MQL5.''
Kitap, sinir ağlarının nasıl çalıştığının temel ilkelerini tanıtarak, nasıl çalıştıklarını ve algoritmik ticarette bulunanlar gibi karmaşık problemleri çözmede neden bu kadar etkili olduklarını açıklayarak başlar. Daha sonra dikkat mekanizmaları ve model yakınsamasını geliştiren mimari çözümler gibi daha ileri konulara giriyor. Konvolüsyonel ve tekrarlayan modeller de dahil olmak üzere farklı sinir ağları türlerini nasıl kullanacağınızı ve bunları MQL5 ortamına nasıl entegre edeceğinizi öğreneceksiniz.
يبدأ الكتاب بتقديم المبادئ الأساسية لكيفية عمل الشبكات العصبية، وشرح كيفية عملها ولماذا هي فعالة جدًا في حل المشكلات المعقدة مثل تلك الموجودة في التداول الخوارزمي. ثم يتعمق في موضوعات أكثر تقدمًا مثل آليات الانتباه والحلول المعمارية التي تعمل على تحسين تقارب النماذج. ستتعلم كيفية استخدام أنواع مختلفة من الشبكات العصبية، بما في ذلك النماذج التلافيفية والمتكررة، وكيفية دمجها في البيئة MQL5.
이 책은 신경망의 작동 방식에 대한 기본 원칙을 도입하여 작동 방식과 알고리즘 거래에서 발견되는 것과 같은 복잡한 문제를 해결하는 데 효과적인 이유를 설명합니다. 그런 다음 주의 메커니즘 및 모델 수렴을 개선하는 건축 솔루션과 같은 고급 주제를 탐구합니다. 컨볼 루션 및 재귀 모델을 포함한 다양한 유형의 신경망을 사용하는 방법과이를 MQL5 환경에 통합하는 방법을 배웁니다.
この本は、ニューラルネットワークがどのように機能するかの基本原則を紹介し、それらがどのように機能するのか、そしてなぜアルゴリズム取引に見られるような複雑な問題を解決するのに非常に効果的であるのかを説明することから始まります。その後、注目メカニズムやモデル収束を改善するアーキテクチャソリューションなど、より高度なトピックを掘り下げます。畳み込みモデルや再発モデルなど、さまざまな種類のニューラルネットワークを使用する方法と、それらをMQL5環境に統合する方法を学びます。
本書首先介紹了神經網絡運行的基本原理,解釋了它們的工作原理以及為什麼它們在解決諸如算法交易中遇到的復雜問題方面如此有效。然後,他深入研究了更高級的主題,例如註意力機制和增強模型收斂性的體系結構解決方案。您將學習如何使用各種類型的神經網絡,包括卷積和遞歸模型,以及如何將其集成到MQL5環境中。

You may also be interested in:

Building Computer Vision Applications Using Artificial Neural Networks With Examples in OpenCV and TensorFlow with Python 2nd Edition
Building Computer Vision Applications Using Artificial Neural Networks With Examples in OpenCV and TensorFlow with Python 2nd Edition
Quantitative Trading: How to Build Your Own Algorithmic Trading Business (Wiley Trading)
The Python Bible 7 in 1 Volumes One To Seven (Beginner, Intermediate, Data Science, Machine Learning, Finance, Neural Networks, Computer Vision)
Machine Learning The Ultimate Beginners Guide For Neural Networks, Algorithms, Random Forests and Decision Trees Made Simple
New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms (Studies in Computational Intelligence, 1146)
Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics (Studies in Computational Intelligence Book 1096)
Deep Learning Demystified A Step-by-Step Introduction to Neural Networks
Artificial Intelligence An Illustrated History From Medieval Robots to Neural Networks (Sterling Illustrated Histories)
Power Converters and AC Electrical Drives with Linear Neural Networks (Energy, Power Electronics, and Machines)
Neural Networks and Animal Behavior (Monographs in Behavior and Ecology, 29)
Quantum Machine Learning Quantum Algorithms and Neural Networks
Build Your Own Neural Networks Step-By-Step Explanation For Beginners
Quantum Machine Learning Quantum Algorithms and Neural Networks
Day Trading: A Beginner|s Guide to Day Trading: Discover How to Be a Day Trading King (A Beginners Guide To Trading Book 3)
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Hands-On Convolutional Neural Networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python
Artificial Intelligence: An Illustrated History: From Medieval Robots to Neural Networks (Union Square and Co. Illustrated Histories)
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow
Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems
Python Machine Learning For Beginners An introduction to neural networks and a brief overview of the processes you need to know when programming computers and coding with Python
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow (Rough Cuts)
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning with Python The Ultimate Guide for Absolute Beginners with Steps to Implement Artificial Neural Networks with Real Examples (Useful Python Tools eg. Anaconda, Jupiter Notebook)
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Introduction to Unity ML-Agents: Understand the Interplay of Neural Networks and Simulation Space Using the Unity ML-Agents Package
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
The Laws of Trading: A Trader|s Guide to Better Decision-Making for Everyone (Wiley Trading)
Machine Trading: Deploying Computer Algorithms to Conquer the Markets (Wiley Trading)
The Trading Game: Playing by the Numbers to Make Millions (Wiley Trading Book 77)
Day Trading Using the MEJT System: A proven approach for trading the S and P 500 Index