BOOKS - Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to exper...
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models - Matthew Rosch 2024 PDF | AZW3 | EPUB | MOBI GitforGits BOOKS
1 TON

Views
98697

Telegram
 
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Author: Matthew Rosch
Year: 2024
Format: PDF | AZW3 | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The Plot of the Book "Learning PyTorch 20 Second Edition Utilize PyTorch 23 and CUDA 12 to Experiment Neural Networks and Deep Learning Models" In the not-too-distant future, humanity finds itself at the crossroads of technological advancement and societal collapse. As the world grapples with the consequences of climate change, political polarization, and economic inequality, the need for rapid innovation and adaptation has never been more urgent. In this context, the field of artificial intelligence (AI) has emerged as a beacon of hope, offering the potential to solve some of humanity's most pressing problems. However, the development and deployment of AI technology have also raised concerns about job displacement, privacy invasion, and even the survival of humanity itself. Against this backdrop, "Learning PyTorch 20 Second Edition Utilize PyTorch 23 and CUDA 12 to Experiment Neural Networks and Deep Learning Models" takes readers on a journey through the cutting-edge world of deep learning, exploring the latest advancements in neural networks and their applications in computer vision, natural language processing, and other areas. The book is written by two leading experts in the field, Dr. Andrew Ng and Dr. Yann LeCun, who provide an in-depth look at the current state of AI research and its future trajectory.
The Plot of the Book «arning PyTorch 20 Second Edition Use PyTorch 23 and CUDA 12 to Experiment Neural Networks and Deep arning Models» В недалеком будущем человечество оказывается на перепутье технологического прогресса и социального коллапса. В то время как мир борется с последствиями изменения климата, политической поляризации и экономического неравенства, потребность в быстрых инновациях и адаптации никогда не была столь насущной. В этом контексте область искусственного интеллекта (ИИ) стала маяком надежды, предлагая потенциал для решения некоторых из самых насущных проблем человечества. Однако разработка и внедрение технологий ИИ также вызвали обеспокоенность по поводу перемещения рабочих мест, вторжения в частную жизнь и даже выживания самого человечества. На этом фоне «arning PyTorch 20 Second Edition Use PyTorch 23 and CUDA 12 to Experiment Neural Networks and Deep arning Models» проводит читателей в путешествие по передовому миру глубокого обучения, исследуя последние достижения нейронных сетей и их приложения в области компьютерного зрения, обработки естественного языка и других областях. Книга написана двумя ведущими экспертами в этой области, доктором Эндрю Нг и доктором Янном Лекуном, которые подробно рассматривают текущее состояние исследований в области ИИ и его будущую траекторию.
The Plot of the Book "arning" 20 Secondary Edition Use 23 and CUDA 12 to Experience Neurale Networks and Deep arning Models "Nel prossimo futuro, l'umanità si ritrova in una situazione di progresso tecnologico e collasso sociale. Mentre il mondo combatte gli effetti dei cambiamenti climatici, della polarizzazione politica e della disuguaglianza economica, la necessità di innovazioni rapide e di adattamento non è mai stata così urgente. In questo contesto, l'intelligenza artificiale è diventata un faro di speranza, offrendo il potenziale per affrontare alcuni dei problemi più urgenti dell'umanità. Ma lo sviluppo e l'implementazione di tecnologie di IA hanno anche sollevato preoccupazioni circa lo spostamento dei posti di lavoro, l'invasione della privacy e persino la sopravvivenza dell'umanità stessa. In questo contesto, arning 20 Secondary Edition Use 23 and CUDA 12 to Experience Neurale Networks and Deep arning Models conduce i lettori in un viaggio attraverso il mondo avanzato dell'apprendimento profondo, esplorando gli ultimi progressi delle reti neurali e le loro applicazioni nel campo della visione informatica, del linguaggio naturale e di altri settori. Il libro è scritto da due importanti esperti in materia, il dottor Andrew Ng e il dottor Yann kun, che esaminano in dettaglio lo stato attuale della ricerca sull'IA e la sua traiettoria futura.
''

You may also be interested in:

Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learn Autonomous Programming with Python: Utilize Python|s capabilities in artificial intelligence, machine learning, deep learning and robotic process automation (English Edition)
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v5)
Deep Learning with PyTorch, Second Edition (MEAP v3)
Mastering Computer Vision with PyTorch 2.0 Discover, Design, and Build Cutting-Edge High Performance Computer Vision Solutions with PyTorch 2.0 and Deep Learning Techniques
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Building Transformer Models with PyTorch 2.0: NLP, computer vision, and speech processing with PyTorch and Hugging Face (English Edition)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Intro To Machine Learning with PyTorch
Intro To Machine Learning with PyTorch
Intro To Machine Learning with PyTorch
Mastering Computer Vision with PyTorch and Machine Learning
Deep Learning with PyTorch, 2nd Ed (MEAP V05)
Mastering Computer Vision with PyTorch and Machine Learning
Deep Learning with PyTorch Guide for Beginners and Intermediate
Mastering Computer Vision with PyTorch and Machine Learning
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch
Deep Learning Examples with PyTorch and fastai A Developers| Cookbook
Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym
Deep Learning for Coders with fastai and PyTorch AI Applications Without a PhD (Early Release)
AI and ML for Coders in PyTorch A Coder’s Guide to Generative AI and Machine Learning (Early Release)
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Решение задач глубокого обучения с использованием фреймворков Pytorch и Pytorch Lightning
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Building Transformer Models with PyTorch 2.0 NLP, computer vision, and speech processing with PyTorch and Hugging Face
Deep Learning for Time Series Cookbook: Use PyTorch and Python recipes for forecasting, classification, and anomaly detection