BOOKS - Model-Based Machine Learning
Model-Based Machine Learning - John Winn  PDF  BOOKS
3 TON

Views
52044

Telegram
 
Model-Based Machine Learning
Author: John Winn
Format: PDF
File size: PDF 31 MB
Language: English



Pay with Telegram STARS
The book's main themes are: 1. The importance of studying and understanding the evolution of technology. 2. The need to develop a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the unification of people in a warring state. 3. The use of model-based machine learning as a tool for understanding and communicating the behavior of complex systems. 4. The separation of assumptions from the detailed mathematics of algorithms, making it easier to understand and communicate the behavior of a machine learning system. 5. The application of model-based machine learning to a variety of domains and problems. ModelBased Machine Learning: A Paradigm Shift in Understanding and Communicating Complex Systems Introduction: In today's world, machine learning (ML) has become an integral part of our lives, from virtual assistants to self-driving cars, and from medical diagnosis to financial forecasting. However, the rapid growth and diversification of ML applications have also created a fundamental challenge - connecting the abstract mathematics of a particular ML technique to a concrete real-world problem.
Основные темы книги: 1. Важность изучения и понимания эволюции технологий. 2. Необходимость выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и объединения людей в воюющем государстве. 3. Использование машинного обучения на основе моделей в качестве инструмента для понимания и информирования о поведении сложных систем. 4. Отделение предположений от детальной математики алгоритмов, облегчающее понимание и сообщение поведения системы машинного обучения. 5. Применение основанного на моделях машинного обучения к различным областям и проблемам. Машинное обучение на основе моделей: смена парадигмы в понимании и общении со сложными системами Введение: В современном мире машинное обучение (ML) стало неотъемлемой частью нашей жизни - от виртуальных помощников до беспилотных автомобилей и от медицинской диагностики до финансового прогнозирования. Однако быстрый рост и диверсификация приложений ML также создали фундаментальную проблему - соединение абстрактной математики конкретной техники ML с конкретной реальной проблемой.
Principaux thèmes du livre : 1. L'importance d'étudier et de comprendre l'évolution des technologies. 2. La nécessité d'élaborer un paradigme personnel pour percevoir le processus technologique du développement de la connaissance moderne comme la base de la survie de l'humanité et de l'unification des gens dans un État en guerre. 3. Utiliser l'apprentissage automatique basé sur des modèles comme outil pour comprendre et communiquer le comportement des systèmes complexes. 4. Séparer les hypothèses des mathématiques détaillées des algorithmes, ce qui facilite la compréhension et la communication du comportement du système d'apprentissage automatique. 5. Appliquer l'apprentissage automatique basé sur des modèles à différents domaines et problèmes. L'apprentissage automatique basé sur des modèles : changement de paradigme dans la compréhension et la communication avec les systèmes complexes Introduction : Dans le monde moderne, l'apprentissage automatique (ML) est devenu une partie intégrante de nos vies - des assistants virtuels aux véhicules sans pilote, en passant par le diagnostic médical et la prévision financière. Cependant, la croissance rapide et la diversification des applications ML ont également créé un problème fondamental - l'association des mathématiques abstraites de la technique particulière ML à un problème réel particulier.
Temas principales del libro: 1. La importancia de estudiar y entender la evolución de la tecnología. 2. La necesidad de desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la unión de las personas en un Estado en guerra. 3. Utilizar el aprendizaje automático basado en modelos como herramienta para comprender e informar sobre el comportamiento de sistemas complejos. 4. Separar las suposiciones de las matemáticas detalladas de algoritmos, facilitando la comprensión y comunicación del comportamiento del sistema de aprendizaje automático. 5. Aplicar el aprendizaje automático basado en modelos a diferentes áreas y problemas. Aprendizaje automático basado en modelos: un cambio de paradigma en la comprensión y comunicación con sistemas complejos Introducción: En el mundo actual, el aprendizaje automático (ML) se ha convertido en una parte integral de nuestras vidas, desde asistentes virtuales hasta vehículos no tripulados y desde diagnósticos médicos hasta predicciones financieras. n embargo, el rápido crecimiento y la diversificación de las aplicaciones de ML también han creado un problema fundamental: la conexión de las matemáticas abstractas de una técnica específica de ML con un problema real específico.
Temas principais do livro: 1. A importância do estudo e da compreensão da evolução da tecnologia. 2. A necessidade de estabelecer um paradigma pessoal para a percepção do processo tecnológico de desenvolvimento do conhecimento moderno como base para a sobrevivência humana e a união das pessoas num estado em guerra. 3. Usar o aprendizado de máquinas baseado em modelos como ferramenta para compreender e informar sobre o comportamento de sistemas complexos. 4. Separando os pressupostos da matemática detalhada dos algoritmos, facilitando a compreensão e a comunicação do comportamento do sistema de aprendizagem de máquinas. 5. Aplicação baseada em modelos de aprendizado de máquina a diferentes áreas e problemas. Aprendizado de máquinas baseado em modelos: mudança de paradigma na compreensão e comunicação com sistemas complexos Introdução: No mundo atual, o aprendizado de máquinas (ML) tornou-se parte integrante de nossas vidas, desde ajudantes virtuais até carros não tripulados e desde diagnósticos médicos até previsões financeiras. No entanto, o rápido crescimento e a diversificação das aplicações ML também criaram um problema fundamental: a junção da matemática abstrata de uma técnica específica de ML com um problema real específico.
Temi principali del libro: 1. L'importanza di studiare e comprendere l'evoluzione della tecnologia. 2. La necessità di sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna come base per la sopravvivenza dell'umanità e l'unione delle persone in uno stato in guerra. 3. Utilizzare l'apprendimento automatico basato su modelli come strumento per comprendere e informare sul comportamento di sistemi complessi. 4. Separare i presupposti dalla matematica dettagliata degli algoritmi per facilitare la comprensione e la comunicazione del comportamento del sistema di apprendimento automatico. 5. Applicazione dei modelli di apprendimento automatico a diverse aree e problematiche. Apprendimento automatico basato su modelli: cambiamento di paradigma nella comprensione e nella comunicazione con sistemi complessi Introduzione: nel mondo attuale, l'apprendimento automatico (ML) è diventato parte integrante della nostra vita, dagli assistenti virtuali ai droni, dalla diagnosi medica alla previsione finanziaria. Tuttavia, la rapida crescita e la diversificazione delle applicazioni ML hanno anche creato un problema fondamentale: la connessione della matematica astratta particolare tecnica ML con un problema reale specifico.
Hauptthemen des Buches: 1. Die Bedeutung des Studiums und des Verständnisses der Technologieentwicklung. 2. Die Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat zu entwickeln. 3. Verwenden e modellbasiertes maschinelles rnen als Werkzeug, um das Verhalten komplexer Systeme zu verstehen und zu kommunizieren. 4. Trennung von Annahmen von der detaillierten Mathematik von Algorithmen, die das Verständnis und die Kommunikation des Verhaltens eines maschinellen rnsystems erleichtern. 5. Wenden e modellbasiertes maschinelles rnen auf verschiedene Bereiche und Probleme an. Modellbasiertes maschinelles rnen: Paradigmenwechsel im Verständnis und in der Kommunikation mit komplexen Systemen Einführung: In der heutigen Welt ist maschinelles rnen (ML) zu einem festen Bestandteil unseres bens geworden - vom virtuellen Assistenten bis zum selbstfahrenden Auto und von der medizinischen Diagnostik bis zur Finanzprognose. Das schnelle Wachstum und die Diversifizierung der ML-Anwendungen haben jedoch auch ein grundlegendes Problem geschaffen - die Verbindung der abstrakten Mathematik einer bestimmten ML-Technik mit einem bestimmten realen Problem.
''
Kitabın ana konuları: 1. Teknolojinin evrimini incelemek ve anlamanın önemi. 2. Modern bilginin gelişiminin teknolojik sürecinin, insanlığın hayatta kalmasının ve insanların savaşan bir durumda birleşmesinin temeli olarak algılanması için kişisel bir paradigma geliştirme ihtiyacı. 3. Model tabanlı makine öğrenimini karmaşık sistemlerin davranışlarını anlamak ve bilgilendirmek için bir araç olarak kullanmak. 4. Varsayımları algoritmaların detaylı matematiğinden ayırarak, bir makine öğrenme sisteminin davranışını anlamayı ve iletmeyi kolaylaştırır. 5. Model tabanlı makine öğrenimini farklı alanlara ve problemlere uygulama. Model tabanlı makine öğrenimi: karmaşık sistemleri anlama ve iletişim kurmada paradigma değişimi Giriş: Günümüz dünyasında, makine öğrenimi (ML), sanal asistanlardan kendi kendini süren arabalara ve tıbbi teşhislerden finansal tahminlere kadar hayatımızın ayrılmaz bir parçası haline geldi. Bununla birlikte, ML uygulamalarının hızlı büyümesi ve çeşitlendirilmesi de temel bir problem yaratmıştır - belirli bir ML tekniğinin soyut matematiğini belirli bir gerçek problemle bağlamak.
المواضيع الرئيسية للكتاب: 1. أهمية دراسة وفهم تطور التكنولوجيا. 2. الحاجة إلى وضع نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة كأساس لبقاء البشرية وتوحيد الشعوب في دولة متحاربة. 3. استخدام التعلم الآلي القائم على النماذج كأداة لفهم وإعلام سلوك الأنظمة المعقدة. 4. فصل الافتراضات عن الرياضيات التفصيلية للخوارزميات، مما يسهل فهم وتوصيل سلوك نظام التعلم الآلي. 5. تطبيق التعلم الآلي القائم على النماذج على مجالات ومشاكل مختلفة. التعلم الآلي القائم على النماذج: نقلة نوعية في الفهم والتواصل مع الأنظمة المعقدة مقدمة: في عالم اليوم، أصبح التعلم الآلي (ML) جزءًا لا يتجزأ من حياتنا - من المساعدين الافتراضيين إلى السيارات ذاتية القيادة ومن التشخيص الطبي إلى التنبؤ المالي. ومع ذلك، فإن النمو السريع وتنويع تطبيقات ML قد خلق أيضًا مشكلة أساسية - ربط الرياضيات التجريدية لتقنية ML معينة بمشكلة حقيقية معينة.

You may also be interested in:

Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Building Intelligent Systems Using Machine Learning and Deep Learning Security, Applications and Its Challenges
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning and Deep Learning in Real-Time Applications
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Statistical Reinforcement Learning Modern Machine Learning Approaches
Machine Learning and Deep Learning in Natural Language Processing
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Anesthesiology: A Problem-Based Learning Approach (Anaesthesiology: A Problem-Based Learning Approach)
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning in Elixir Learning to Learn with Nx and Axon
Programming Machine Learning From Coding to Deep Learning
Machine Learning in Elixir Learning to Learn with Nx and Axon
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Equity and Trusts: A Problem-Based Approach (Problem Based Learning)
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Agricultural Informatics Automation Using the IoT and Machine Learning (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Learning Google Cloud Vertex AI: Build, deploy, and manage machine learning models with Vertex AI (English Edition)
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Artificial Intelligence 4 books in 1 AI For Beginners + AI For Business + Machine Learning For Beginners + Machine Learning And Artificial Intelligence