BOOKS - Model Optimization Methods for Efficient and Edge AI Federated Learning Archi...
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications - Pethuru Raj Chelliah, Amir Masoud Rahmani, Robert Colby, Gayathri Nagasubramanian, Sunku Ranganath 2025 PDF | EPUB Wiley-IEEE Press BOOKS
1 TON

Views
41550

Telegram
 
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Author: Pethuru Raj Chelliah, Amir Masoud Rahmani, Robert Colby, Gayathri Nagasubramanian, Sunku Ranganath
Year: 2025
Format: PDF | EPUB
File size: 29.4 MB
Language: ENG



Pay with Telegram STARS
Book Description: Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures Frameworks and Applications explores the latest advances in model optimization techniques for efficient and edge AI federated learning architectures, providing insights into the development of personalized paradigms for understanding the technological process of developing modern knowledge. The book covers topics such as model selection, feature engineering, hyperparameter tuning, and regularization methods, with a focus on their applications in edge AI and federated learning frameworks. It also discusses the challenges and limitations of these techniques and provides solutions to overcome them. The book begins by introducing the concept of model optimization and its importance in the field of AI research. It then delves into the various techniques used in model optimization, including linear regression, decision trees, random forests, support vector machines, and neural networks. The authors explain how these techniques can be applied to edge AI and federated learning architectures, highlighting their strengths and weaknesses. They also provide examples of successful applications of these techniques in real-world scenarios. The book's second part focuses on the challenges and limitations of model optimization in edge AI and federated learning, including issues related to data privacy, security, and scalability. The authors discuss the need for personalized paradigms to understand the technological process of developing modern knowledge and how they can help address these challenges. They also explore the potential of edge AI and federated learning to overcome these challenges and achieve efficient and effective models.
Model Optimization Methods for Efficient and Edge AI Federated arning Architectures Frameworks and Applications исследует последние достижения в методах оптимизации моделей для эффективных и пограничных архитектур объединенного обучения с искусственным интеллектом, предоставляя понимание разработки персонализированных парадигм для понимания технологического процесса развития современных знаний. Книга охватывает такие темы, как выбор модели, разработка функций, настройка гиперпараметров и методы регуляризации, с акцентом на их применение в пограничном ИИ и федеративных системах обучения. В нем также обсуждаются проблемы и ограничения этих методов и предлагаются решения для их преодоления. Книга начинается с введения понятия оптимизации модели и её важности в области исследований ИИ. Затем он углубляется в различные методы, используемые в оптимизации модели, включая линейную регрессию, деревья решений, случайные леса, машины опорных векторов и нейронные сети. Авторы объясняют, как эти методы могут быть применены к пограничному ИИ и федеративным архитектурам обучения, подчеркивая их сильные и слабые стороны. Они также предоставляют примеры успешного применения этих методов в реальных сценариях. Вторая часть книги посвящена проблемам и ограничениям оптимизации модели в пограничном ИИ и объединенном обучении, включая вопросы, связанные с конфиденциальностью данных, безопасностью и масштабируемостью. Авторы обсуждают необходимость персонализированных парадигм для понимания технологического процесса развития современных знаний и того, как они могут помочь в решении этих проблем. Они также изучают потенциал пограничного ИИ и объединенного обучения для преодоления этих проблем и достижения эффективных и действенных моделей.
''

You may also be interested in:

Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Optimization Methods for Product and System Design (Engineering Optimization: Methods and Applications)
Optimization Methods for Structural Engineering (Engineering Optimization: Methods and Applications)
Efficient Go: Data-Driven Performance Optimization
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Energy Efficient Servers: Blueprints for Data Center Optimization
Efficient Go Data Driven Performance Optimization (Early Release)
Isogeometric Topology Optimization: Methods, Applications and Implementations (Engineering Applications of Computational Methods Book 7)
PostgreSQL Query Optimization: The Ultimate Guide to Building Efficient Queries
PostgreSQL Query Optimization The Ultimate Guide to Building Efficient Queries, 2nd Edition
PostgreSQL Query Optimization The Ultimate Guide to Building Efficient Queries, 2nd Edition
Efficient Execution of Irregular Dataflow Graphs: Hardware Software Co-optimization for Probabilistic AI and Sparse Linear Algebra
Numerical Methods and Optimization
Numerical Methods and Optimization in Finance
Matrix, Numerical, and Optimization Methods in Science and Engineering
Lock Picking Equipment for Beginners The Best Guide on How to Pick Locks Using the Most Efficient Methods, Tools and Kits
Modern Optimization Methods for Decision Making Under Risk and Uncertainty
Applications of Modern Heuristic Optimization Methods in Power and Energy Systems
Algorithmic Trading Methods Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition
Variational Methods in Nonlinear Analysis: With Applications in Optimization and Partial Differential Equations (De Gruyter Textbook)
Assessment and Treatment Methods for Manual Therapists The Most Effective and Efficient Treatment Every Time
Assessment and Treatment Methods for Manual Therapists: The Most Effective and Efficient Treatment Every Time
Construct, Merge, Solve and Adapt: A Hybrid Metaheuristic for Combinatorial Optimization (Computational Intelligence Methods and Applications)
Nature-inspired Optimization Algorithms and Soft Computing Methods, technology and applications for IoTs, smart cities, healthcare and industrial automation
Exact and Heuristic Methods in Combinatorial Optimization: A Study on the Linear Ordering and the Maximum Diversity Problem (Applied Mathematical Sciences, 175)
Optimization and Games for Controllable Markov Chains: Numerical Methods with Application to Finance and Engineering (Studies in Systems, Decision and Control, 504)
Control and Optimization Methods for Complex System Resilience (Studies in Systems, Decision and Control Book 478)
Nature-inspired Optimization Algorithms and Soft Computing: Methods, technology and applications for IoTs, smart cities, healthcare and industrial automation (Computing and Networks)
Learn to Design a Website for Your Business, Using WordPress for Beginners: BEST Website Development Methods, for Building Advanced Sites EFFORTLESSLY to Full Optimization, Creating Content and More.
Dynamic Model Development Methods, Theory and Applications
Neural Networks with Model Compression (Computational Intelligence Methods and Applications)
Home Office Solutions How to Set Up an Efficient Workspace Anywhere in Your House (Creative Homeowner) Creating a Comfortable Space for Remote Work; Space-Efficient Ideas, Organization Tips, and More
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Optimization Applications
STOCHASTIC SIMULATION OPTIMIZATION FOR DISCRETE EVENT SYSTEMS: PERTURBATION ANALYSIS, ORDINAL OPTIMIZATION AND BEYOND
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Optimization Applications
Stem Cell-Based Neural Model Systems for Brain Disorders (Methods in Molecular Biology, 2683)
Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous A-Posteriori Methods (Augsburger Schriften Zur Mathematik, Physik Und Informatik)
Multiscale Model Reduction: Multiscale Finite Element Methods and Their Generalizations (Applied Mathematical Sciences, 212)
Optimization and Control for Partial Differential Equations: Uncertainty quantification, open and closed-loop control, and shape optimization (Radon … on Computational and Applied Mathematics, 2