BOOKS - Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvy...
Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey} - Stephanie Zimmer, Rebecca Powell, Isabella Vel?squez 2025 PDF CRC Press BOOKS
1 TON

Views
70453

Telegram
 
Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey}
Author: Stephanie Zimmer, Rebecca Powell, Isabella Vel?squez
Year: 2025
Format: PDF
File size: 63.8 MB
Language: ENG



Pay with Telegram STARS
W. Powers. Book Description: This book provides a comprehensive introduction to survey data analysis using R, focusing on the practical applications of survey research and the importance of understanding complex survey data. It covers the basics of survey design, data collection, and analysis, as well as advanced topics such as weighting, imputation, and regression methods. The author emphasizes the importance of understanding the context of survey research and the need for a personal paradigm for perceiving the technological process of developing modern knowledge. The book begins with an overview of the history of survey research and its relevance to contemporary society, highlighting the importance of surveys in shaping public opinion and policy. It then delves into the technical aspects of survey design, including questionnaire construction, sampling, and data collection methods. The author also discusses the challenges of survey research, such as nonresponse bias and measurement error, and provides strategies for addressing these issues. Once the basics are covered, the book moves on to more advanced topics such as weighting, imputation, and regression methods for analyzing survey data. These techniques are demonstrated through real-world examples, allowing readers to see how they can be applied in practice. The book concludes with a discussion on the future of survey research and the potential for machine learning and artificial intelligence to revolutionize the field.
У. Пауэрс. Эта книга содержит исчерпывающее введение в анализ данных опроса с использованием R, фокусируясь на практическом применении исследований опроса и важности понимания сложных данных опроса. Он охватывает основы проектирования опросов, сбора и анализа данных, а также сложные темы, такие как взвешивание, вменение и методы регрессии. Автор подчеркивает важность понимания контекста опросных исследований и необходимость личностной парадигмы восприятия технологического процесса развития современных знаний. Книга начинается с обзора истории опросных исследований и их актуальности для современного общества, подчёркивая важность опросов в формировании общественного мнения и политики. Затем он углубляется в технические аспекты проектирования изысканий, включая составление вопросника, отбор проб и методы сбора данных. Автор также обсуждает проблемы исследования опроса, такие как смещение без ответа и ошибка измерения, и предоставляет стратегии для решения этих проблем. После изучения основ книга переходит к более продвинутым темам, таким как взвешивание, вменение и методы регрессии для анализа данных опросов. Эти методы демонстрируются на реальных примерах, что позволяет читателям увидеть, как их можно применить на практике. Книга завершается обсуждением будущего опросных исследований и потенциала машинного обучения и искусственного интеллекта для революции в этой области.
''

You may also be interested in:

Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey}
Exploring Complex Survey Data Analysis Using R A Tidy Introduction with {srvyr} and {survey}
Key Labor Market Indicators: Analysis with Household Survey Data (Streamlined Analysis with ADePT Software)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Data Wrangling on AWS: Clean and organize complex data for analysis
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Exploring Data Analysis: The Computer Revolution in Statistics
Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Geometric Harmonic Analysis IV: Boundary Layer Potentials in Uniformly Rectifiable Domains, and Applications to Complex Analysis (Developments in Mathematics, 75)
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Advances in Data Science Symbolic, Complex, and Network Data
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition
Visualizing Data: Exploring and Explaining Data with the Processing Environment
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
A First Course in Complex Analysis
Understanding Results with Python: 100 Drills for Data Analysis and Statistical Analysis