BOOKS - Multi-Agent Reinforcement Learning Foundations and Modern Approaches
Multi-Agent Reinforcement Learning Foundations and Modern Approaches - Stefano V. Albrecht, Filippos Christianos, Lukas Sch?fer December 17, 2024 EPUB The MIT Press BOOKS
1 TON

Views
75548

Telegram
 
Multi-Agent Reinforcement Learning Foundations and Modern Approaches
Author: Stefano V. Albrecht, Filippos Christianos, Lukas Sch?fer
Year: December 17, 2024
Format: EPUB
File size: 14.3 MB
Language: ENG



Pay with Telegram STARS
MultiAgent Reinforcement Learning Foundations and Modern Approaches The book "MultiAgent Reinforcement Learning Foundations and Modern Approaches" is a comprehensive guide to understanding the principles and applications of multi-agent reinforcement learning, a rapidly growing field that combines techniques from artificial intelligence, game theory, and control theory to solve complex problems in various domains. The book provides a thorough overview of the foundational concepts, algorithms, and applications of multi-agent reinforcement learning, making it an essential resource for researchers, students, and practitioners working in this area. The book begins by introducing the fundamental concepts of reinforcement learning and its extensions to multi-agent settings, where multiple agents interact with each other and learn to optimize their behaviors based on their observations and rewards. It covers the key challenges in multi-agent reinforcement learning, such as scalability, non-stationarity, and adversarial behavior, and discusses the different approaches to addressing these challenges. The book then delves into the foundational topics of multi-agent reinforcement learning, including the concept of a Nash equilibrium, the role of communication and cooperation, and the use of attention mechanisms to focus on relevant information. It also explores modern approaches to multi-agent reinforcement learning, such as deep reinforcement learning, off-policy learning, and transfer learning, and discusses their applications in areas like robotics, autonomous vehicles, and smart homes. One of the unique aspects of the book is its emphasis on the need to study and understand the process of technology evolution.
MultiAgent Reinforcement arning Foundations and Modern Approaches Книга «MultiAgent Reinforcement arning Foundations and Modern Approaches» - это всеобъемлющее руководство по пониманию принципов и приложений многоагентного обучения подкреплению, быстро развивающейся области, которая сочетает в себе методы искусственного интеллекта, теории игр и теории управления для решения сложных задач в различных областях. Книга содержит подробный обзор основополагающих концепций, алгоритмов и приложений многоагентного обучения с подкреплением, что делает его важным ресурсом для исследователей, студентов и практиков, работающих в этой области. Книга начинается с введения фундаментальных концепций обучения с подкреплением и его расширения до многоагентных настроек, где несколько агентов взаимодействуют друг с другом и учатся оптимизировать свое поведение на основе своих наблюдений и вознаграждений. Он охватывает ключевые проблемы многоагентного обучения с подкреплением, такие как масштабируемость, нестационарность и состязательное поведение, и обсуждает различные подходы к решению этих проблем. Затем книга углубляется в основополагающие темы многоагентного обучения с подкреплением, включая концепцию равновесия Нэша, роль общения и сотрудничества, а также использование механизмов внимания, чтобы сосредоточиться на соответствующей информации. В нем также рассматриваются современные подходы к многоагентному обучению с подкреплением, такие как глубокое обучение с подкреплением, обучение вне политики и обучение с передачей, а также обсуждаются их приложения в таких областях, как робототехника, автономные транспортные средства и умные дома. Один из уникальных аспектов книги - акцент на необходимости изучения и понимания процесса эволюции технологий.
''

You may also be interested in:

Multi-Agent Reinforcement Learning Foundations and Modern Approaches
Multi-Agent Machine Learning A Reinforcement Approach
Foundations of Deep Reinforcement Learning Theory and Practice in Python
Evolutionary Multi-Task Optimization: Foundations and Methodologies (Machine Learning: Foundations, Methodologies, and Applications)
Foundations of Deep Reinforcement Learning Theory and Practice in Python (Rough Cuts)
Multi-Agent Oriented Programming Programming Multi-Agent Systems Using JaCaMo (Intelligent Robotics and Autonomous Agents series)
Statistical Reinforcement Learning Modern Machine Learning Approaches
Iterative Learning Control for Multi-agent Systems Coordination
Modern Big Data Architectures A Multi-Agent Systems Perspective
Multi-Agent Oriented Programming: Programming Multi-Agent Systems Using JaCaMo
An Approach to Multi-agent Systems as a Generalized Multi-synchronization Problem (Understanding Complex Systems)
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Learning Modern C++ for Finance Foundations for Quantitative Programming (Final Release)
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Python AI Programming Navigating fundamentals of ML, Deep Learning, NLP, and reinforcement learning in practice
Python AI Programming: Navigating fundamentals of ML, deep learning, NLP, and reinforcement learning in practice
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
TensorFlow for Deep Learning From Linear Regression to Reinforcement Learning
Transfer Learning for Multiagent Reinforcement Learning Systems
Agent and Multi-Agent Systems: Technology and Applications: 10th KES International Conference, KES-AMSTA 2016 Puerto de la Cruz, Tenerife, Spain, June … Innovation, Systems and Technologies, 58)
Reinforcement Learning with TensorFlow: A beginner|s guide to designing self-learning systems with TensorFlow and OpenAI Gym
Programming Multi-Agent Systems in AgentSpeak using Jason
Deep Reinforcement Learning
Multi-Agent Systems Platoon Control and Non-Fragile Quantized Consensus
Deep Reinforcement Learning in Action
Control Systems and Reinforcement Learning
Deep Reinforcement Learning with Python, 2E
Reinforcement Learning An Introduction, 2 edition
Deep Reinforcement Learning in Action
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics
Reinforcement Learning Theory and Python Implementation
Practical Deep Reinforcement Learning with Python
Human-Robot Interaction Control Using Reinforcement Learning
Grokking Deep Reinforcement Learning (Final Edition)
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Cognitive Analytics and Reinforcement Learning Theories, Techniques and Applications
The Art of Reinforcement Learning Fundamentals, Mathematics, and Implementations with Python
The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python
The Art of Reinforcement Learning Fundamentals, Mathematics, and Implementations with Python