BOOKS - Large Language Models A Deep Dive Bridging Theory and Practice
Large Language Models A Deep Dive Bridging Theory and Practice - Uday Kamath, Kevin Keenan, Garrett Somers 2024 PDF Springer BOOKS
1 TON

Views
44880

Telegram
 
Large Language Models A Deep Dive Bridging Theory and Practice
Author: Uday Kamath, Kevin Keenan, Garrett Somers
Year: 2024
Format: PDF
File size: 30.7 MB
Language: ENG



Pay with Telegram STARS
Large Language Models A Deep Dive Bridging Theory and Practice The world we live in today is vastly different from the one our parents or grandparents grew up in. Technology has advanced at such a rapid pace that it's hard to keep up with all the changes. One area that has seen tremendous growth and development is language models. These models have become increasingly popular over the past few years due to their ability to generate human-like text based on input provided to them. But what exactly are these models, how do they work, and why are they so important? This book takes a deep dive into large language models, bridging theory and practice to provide readers with a comprehensive understanding of these powerful tools. The book begins by exploring the history of language models, tracing their origins back to the early days of computer science when researchers first began experimenting with machine learning algorithms. From there, it delves into the various types of language models available today, including recurrent neural networks (RNNs), transformer models, and generative adversarial networks (GANs). Each type of model is explained in detail, highlighting its strengths and weaknesses, as well as real-world applications where they have been successfully implemented. Next, the book dives into the nitty-gritty details of how these models actually work. Readers will learn about the different architectures used in language models, such as encoder-decoder structures and attention mechanisms, and how they enable the models to process and generate text.
Модели больших языков Теория и практика глубокого погружения Мост Мир, в котором мы живем сегодня, значительно отличается от того, в котором выросли наши родители или бабушки и дедушки. Технологии продвинулись настолько быстрыми темпами, что угнаться за всеми изменениями сложно. Одной из областей, в которой наблюдается огромный рост и развитие, являются языковые модели. Эти модели становятся все более популярными в последние несколько лет благодаря их способности генерировать человекоподобный текст на основе предоставленных им входных данных. Но что именно это за модели, как они работают и почему они так важны? Эта книга делает глубокое погружение в большие языковые модели, соединяя теорию и практику, чтобы дать читателям всестороннее понимание этих мощных инструментов. Книга начинается с изучения истории языковых моделей, прослеживая их происхождение с ранних дней информатики, когда исследователи впервые начали экспериментировать с алгоритмами машинного обучения. Оттуда он углубляется в различные типы языковых моделей, доступных сегодня, включая рекуррентные нейронные сети (RNN), модели-трансформеры и генеративные состязательные сети (GAN). Каждый тип модели подробно объясняется, подчеркивая его сильные и слабые стороны, а также реальные приложения, где они были успешно реализованы. Далее книга погружается в изящные детали того, как эти модели работают на самом деле. Читатели узнают о различных архитектурах, используемых в языковых моделях, таких как структуры кодер-декодер и механизмы внимания, а также о том, как они позволяют моделям обрабатывать и генерировать текст.
''

You may also be interested in:

Large Language Models A Deep Dive Bridging Theory and Practice
Large Language Models A Deep Dive Bridging Theory and Practice
Large Language Models: A Deep Dive: Bridging Theory and Practice
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models From Text to Tasks Python Programming with the Help of Large Language Models! 5 Projects to Master Python Development with Large Language Models
Python Development with Large Language Models: From Text to Tasks: Python Programming with the Help of Large Language Models! 5 Projects to Master Python … Models (Python Trailblazer|s Bible)
Mastering Large Language Models with Python: Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large … Models (LLMs) with Python (English E
Large Language Models Projects Apply and Implement Strategies for Large Language Models
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Deep Reinforcement Learning with Python RLHF for Chatbots and Large Language Models, 2nd Edition
Introduction to Python and Large Language Models A Guide to Language Models
Introduction to Python and Large Language Models A Guide to Language Models
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
Hands-On Large Language Models Language Understanding and Generation (6th Early Release)
LangChain and LlamaIndex Projects Lab Book Hooking Large Language Models Up to the Real World Using GPT-4, ChatGPT, Hugging Face, and local Ollama Models in Applications
LangChain and LlamaIndex Projects Lab Book Hooking Large Language Models Up to the Real World Using GPT-4, ChatGPT, Hugging Face, and local Ollama Models in Applications
Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS
Large Language Models An Introduction
What Is LLMOps? Large Language Models in Production
What Is LLMOps? Large Language Models in Production
Large Language Models Concepts, Techniques and Applications
Large Language Models Concepts, Techniques and Applications
Large Language Models: Concepts, Techniques and Applications
Observability for Large Language Models Understanding and Improving Your Use of LLMs
Large Language Models in Cybersecurity: Threats, Exposure and Mitigation
Observability for Large Language Models Understanding and Improving Your Use of LLMs
Large Language Models for Developers A Prompt-based Exploration
Large Language Models in Cybersecurity Threats, Exposure and Mitigation
Large Language Models in Cybersecurity Threats, Exposure and Mitigation
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
LLM, Transformer, RAG AI: Mastering Large Language Models, Transformer Models, and Retrieval-Augmented Generation (RAG) Technology
Artificial Intelligence and Large Language Models An Introduction to the Technological Future
Understanding Large Language Models: Learning Their Underlying Concepts and Technologies
LLMOps Managing Large Language Models in Production (Early Release)
Artificial Intelligence and Large Language Models An Introduction to the Technological Future
Understanding Large Language Models Learning Their Underlying Concepts and Technologies