BOOKS - Machine Learning Algorithms in Depth (Final Release)
Machine Learning Algorithms in Depth (Final Release) - Vadim Smolyakov 2024 PDF Manning Publications BOOKS
1 TON

Views
83511

Telegram
 
Machine Learning Algorithms in Depth (Final Release)
Author: Vadim Smolyakov
Year: 2024
Format: PDF
File size: 26.6 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning Algorithms in Depth Final Release" delves into the intricacies of machine learning algorithms, providing readers with a comprehensive understanding of the subject matter. The book covers various aspects of machine learning, including supervised and unsupervised learning, neural networks, deep learning, and natural language processing. It also explores the history of machine learning, its applications, and the challenges associated with it. The author emphasizes the importance of understanding the process of technological evolution and the need to develop a personal paradigm for perceiving the technological advancements in modern knowledge. This paradigm is essential for the survival of humanity and the unity of people in a world filled with conflicts. The book begins by introducing the concept of machine learning and its significance in today's technology-driven world. It explains how machine learning has revolutionized various industries, such as healthcare, finance, marketing, and transportation, among others. The author highlights the importance of understanding the underlying principles of machine learning to harness its full potential. The next chapter delves into the different types of machine learning algorithms, including linear regression, decision trees, random forests, support vector machines, and neural networks. Each algorithm is explained in detail, along with examples and exercises to help readers grasp the concepts better. The chapter also discusses the advantages and disadvantages of each algorithm, allowing readers to make informed decisions about their use in different scenarios. The following chapters explore supervised and unsupervised learning, providing insights into the strengths and weaknesses of each approach.
Книга «Алгоритмы машинного обучения в глубоком окончательном выпуске» углубляется в тонкости алгоритмов машинного обучения, предоставляя читателям исчерпывающее понимание предмета. Книга охватывает различные аспекты машинного обучения, включая обучение с учителем и без учителя, нейронные сети, глубокое обучение и обработку естественного языка. Также исследуется история машинного обучения, его применения и связанные с ним проблемы. Автор подчеркивает важность понимания процесса технологической эволюции и необходимость разработки личностной парадигмы восприятия технологических достижений в современном знании. Эта парадигма необходима для выживания человечества и единства людей в мире, наполненном конфликтами. Книга начинается с представления концепции машинного обучения и его значения в современном мире, основанном на технологиях. В нем объясняется, как машинное обучение произвело революцию в различных отраслях, таких как здравоохранение, финансы, маркетинг и транспорт. Автор подчеркивает важность понимания основополагающих принципов машинного обучения, чтобы полностью использовать его потенциал. В следующей главе рассматриваются различные типы алгоритмов машинного обучения, включая линейную регрессию, деревья решений, случайные леса, машины опорных векторов и нейронные сети. Каждый алгоритм подробно объясняется вместе с примерами и упражнениями, чтобы помочь читателям лучше понять концепции. Также в главе обсуждаются преимущества и недостатки каждого алгоритма, позволяющие читателям принимать обоснованные решения об их использовании в разных сценариях. Следующие главы исследуют контролируемое и неконтролируемое обучение, предоставляя понимание сильных и слабых сторон каждого подхода.
''

You may also be interested in:

Machine Learning Algorithms in Depth (Final Release)
Machine Learning Algorithms in Depth (Final Release)
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Machine Learning Algorithms in Depth
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Elements of Causal Inference: Foundations and Learning Algorithms (Adaptive Computation and Machine Learning series)
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning Algorithms Simplified
Machine Learning Algorithms Simplified
MACHINE LEARNING ALGORITHMS SIMPLIFIED
Machine Learning For Beginners Guide Algorithms Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction
Machine and Deep Learning Algorithms and Applications
Mathematical Analysis of Machine Learning Algorithms
Metaheuristics for Machine Learning Algorithms and Applications
Machine Learning Algorithms Using Python Programming
Understanding Machine Learning From Theory to Algorithms
Mathematical Analysis of Machine Learning Algorithms
Machine Learning Algorithms From Scratch with Python
Metaheuristics for Machine Learning Algorithms and Applications
Grokking Algorithms Simple and Effective Methods to Grokking Deep Learning and Machine Learning
Easily Practical Machine Learning Algorithms with Python