BOOKS - TinyML for Edge Intelligence in IoT and LPWAN Networks
TinyML for Edge Intelligence in IoT and LPWAN Networks - Bharat S. Chaudhari, Sheetal N. Ghorpade, Marco Zennaro 2024 PDF | EPUB Academic Press/Elsevier BOOKS
2 TON

Views
74966

Telegram
 
TinyML for Edge Intelligence in IoT and LPWAN Networks
Author: Bharat S. Chaudhari, Sheetal N. Ghorpade, Marco Zennaro
Year: 2024
Format: PDF | EPUB
File size: 38.7 MB
Language: ENG



Pay with Telegram STARS
TinyML for Edge Intelligence in IoT and LPWAN Networks: A Comprehensive Guide to Understanding the Evolution of Technology and Its Impact on Human Society Introduction: In today's rapidly evolving technological landscape, it is crucial to understand the significance of edge intelligence in Internet of Things (IoT) and Low Power Wide Area Networks (LPWAN) networks. Tiny Machine Learning (TinyML) has emerged as a powerful tool for edge intelligence, enabling devices to learn from data and make decisions without relying on the cloud. This comprehensive guide delves into the concept of TinyML and its potential to revolutionize the way we live and work. Chapter 1: The Evolution of Technology The evolution of technology has been a continuous process, with each innovation building upon the previous one. From the invention of the wheel to the development of artificial intelligence, technology has come a long way. The advent of IoT and LPWAN networks has enabled devices to communicate with each other, creating a vast interconnected web of information. TinyML represents the next step in this evolution, allowing devices to learn and adapt at the edge of the network. Chapter 2: The Need for Personal Paradigms As technology continues to advance, it is essential to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This involves understanding the underlying principles of technology and how they impact human society. By doing so, we can better appreciate the role of TinyML in shaping our future. Chapter 3: The Possibilities of TinyML TinyML offers numerous possibilities for edge intelligence in IoT and LPWAN networks.
TinyML for Edge Intelligence in IoT and LPWAN Networks: A Comprehensive Guide to Understanding the Evolution of Technology and Its Impact on Human Society Введение: В современном быстро развивающемся технологическом ландшафте крайне важно понимать значение edge intelligence в Internet of Things (ioT) и LPower Сети LPWAN. Технология Tiny Machine arning (TinyML) стала мощным инструментом, позволяющим устройствам извлекать уроки из данных и принимать решения, не полагаясь на облачные технологии. Это всеобъемлющее руководство углубляется в концепцию TinyML и его потенциал, чтобы революционизировать то, как мы живем и работаем. Глава 1: Эволюция технологии Эволюция технологии является непрерывным процессом, в котором каждая инновация опирается на предыдущую. От изобретения колеса до развития искусственного интеллекта технологии прошли долгий путь. Появление сетей IoT и LPWAN позволило устройствам взаимодействовать друг с другом, создавая обширную взаимосвязанную паутину информации. TinyML представляет собой следующий шаг в этой эволюции, позволяя устройствам учиться и адаптироваться на границе сети. Глава 2: Потребность в личных парадигмах По мере того, как технологии продолжают развиваться, важно разработать личную парадигму восприятия технологического процесса развития современных знаний. Это предполагает понимание основополагающих принципов технологии и того, как они влияют на человеческое общество. Тем самым мы сможем лучше оценить роль TinyML в формировании нашего будущего. Глава 3: Возможности TinyML TinyML предлагает многочисленные возможности для периферийного интеллекта в сетях IoT и LPWAN.
''

You may also be interested in:

TinyML for Edge Intelligence in IoT and LPWAN Networks
TinyML for Edge Intelligence in IoT and LPWAN Networks
IoT Edge Intelligence
IoT Edge Intelligence
IoT Edge Intelligence (Internet of Things)
Edge Computational Intelligence for AI-Enabled IoT Systems (Advances in Computational Collective Intelligence)
Edge Computational Intelligence for AI-Enabled IoT Systems
Secure Edge Computing for IoT Master Security Protocols, Device Management, Data Encryption, and Privacy Strategies to Innovate Solutions for Edge Computing in IoT
Secure Edge Computing for IoT Master Security Protocols, Device Management, Data Encryption, and Privacy Strategies to Innovate Solutions for Edge Computing in IoT
Secure Edge Computing for IoT: Master Security Protocols, Device Management, Data Encryption, and Privacy Strategies to Innovate Solutions for Edge Computing in IoT (English Edition)
Hands-on TinyML Harness the power of Machine Learning on the edge devices
Learn IoT Programming Using Node-RED Begin to Code Full Stack IoT Apps and Edge Devices with Raspberry Pi, NodeJS, and Grafana
Edge Intelligence Deep Learning-enabled edge computing
Edge Intelligence Deep Learning-enabled edge computing
Edge Intelligence: Deep learning-enabled edge computing
IoT for Beginners Explore IoT Architecture, Working Principles, IoT Devices, and Various Real IoT Projects
Computer Vision, Image Generation and IoT AI: Unleash the Power of Visual Intelligence, Image Generation and Internet of Things using Artificial Intelligence
AWS IoT With Edge ML and Cybersecurity
Practical Manual Of Iot And Edge Computing
AWS IoT With Edge ML and Cybersecurity A Hands-On Approach
AWS IoT With Edge ML and Cybersecurity A Hands-On Approach
Artificial Intelligence in IoT and Cyborgization
Convergence of Artificial Intelligence and IoT
Artificial Intelligence in IoT and Cyborgization
AI-Driven IoT Systems for Industry 4.0 (Edge AI in Future Computing)
Intelligence in IoT-enabled Smart Cities
AI, IoT & the Intelligent Edge Building Your Enterprise Tech Strategy
Social, Legal, and Ethical Implications of IoT, Cloud, and Edge Computing Technologies
Convergence of IoT, Blockchain, and Computational Intelligence in Smart Cities
Artificial Intelligence for Blockchain and Cybersecurity Powered IoT Applications
Convergence of IoT, Blockchain, and Computational Intelligence in Smart Cities
Artificial Intelligence for Blockchain and Cybersecurity Powered IoT Applications
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Hardware Architectures
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Hardware Architectures
Intelligent IoT for the Digital World Incorporating 5G Communications and Fog/Edge Computing Technologies
Artificial Intelligence and IoT for Cyber Security Solutions in Smart Cities
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Use Cases and Emerging Challenges
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Use Cases and Emerging Challenges
Distributed Intelligence Building an autonomous tech ecosystem with AI, blockchain, IoT and green energy
Blockchain and Artificial Intelligence-Based Solution to Enhance the Privacy in Digital Identity and IoT