BOOKS - Deep Learning Techniques for Automation and Industrial Applications
Deep Learning Techniques for Automation and Industrial Applications - Pramod Singh Rathore, Sachin Ahuja, Srinivasa Rao Burri 2024 PDF Wiley-Scrivener BOOKS
1 TON

Views
76682

Telegram
 
Deep Learning Techniques for Automation and Industrial Applications
Author: Pramod Singh Rathore, Sachin Ahuja, Srinivasa Rao Burri
Year: 2024
Format: PDF
File size: 51,8 МБ
Language: ENG



Pay with Telegram STARS
DEEP LEARNING TECHNIQUES FOR AUTOMATION AND INDUSTRIAL APPLICATIONS Introduction The world we live in today is vastly different from the one our parents or grandparents grew up in. The pace of technological change has accelerated to the point where it's hard to keep up with all the advancements. This is especially true when it comes to deep learning techniques, which have revolutionized the field of automation and industrial applications. In this article, we will explore the current state of deep learning techniques, their potential applications, and how they can be used to improve our lives. The Evolution of Technology To understand the significance of deep learning techniques, it's important to first understand the evolution of technology. From the earliest computers to the internet and smartphones, technology has come a long way. Each step forward has brought us closer to a more interconnected and automated society. However, as technology continues to advance at an exponential rate, it's becoming increasingly difficult to keep up with the latest developments. This is where deep learning techniques come into play. Deep learning techniques are a subset of machine learning that uses artificial neural networks to analyze data. These networks are designed to mimic the human brain, allowing them to learn and improve over time.
МЕТОДЫ ГЛУБОКОГО ОБУЧЕНИЯ ДЛЯ АВТОМАТИЗАЦИИ И ПРОМЫШЛЕННЫХ ПРИЛОЖЕНИЙ Введение Мир, в котором мы живем сегодня, значительно отличается от того, в котором выросли наши родители или бабушки и дедушки. Темпы технологических изменений ускорились до такой степени, что трудно идти в ногу со всеми достижениями. Это особенно актуально, когда речь идет о методах глубокого обучения, которые произвели революцию в области автоматизации и промышленных приложений. В этой статье мы рассмотрим текущее состояние методов глубокого обучения, их потенциальные применения и то, как их можно использовать для улучшения нашей жизни. Эволюция технологий Чтобы понять значение методов глубокого обучения, важно сначала понять эволюцию технологий. От самых ранних компьютеров до интернета и смартфонов технологии прошли долгий путь. Каждый шаг вперед приближал нас к более взаимосвязанному и автоматизированному обществу. Тем не менее, поскольку технологии продолжают развиваться экспоненциально, становится все труднее идти в ногу с последними разработками. Здесь в игру вступают техники глубокого обучения. Техники глубокого обучения - подмножество машинного обучения, использующее искусственные нейронные сети для анализа данных. Эти сети предназначены для имитации человеческого мозга, позволяя им со временем учиться и совершенствоваться.
''

You may also be interested in:

Deep Learning Techniques for Automation and Industrial Applications
Deep Learning Techniques for Automation and Industrial Applications
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Learn Autonomous Programming with Python: Utilize Python|s capabilities in artificial intelligence, machine learning, deep learning and robotic process automation (English Edition)
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Deep Learning and XAI Techniques for Anomaly Detection: Integrate the theory and practice of deep anomaly explainability
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Hands-On Natural Language Processing with PyTorch 1.x: Build smart, AI-driven linguistic applications using deep learning and NLP techniques
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python