BOOKS - Machine Learning A Comprehensive Beginner's Guide
Machine Learning A Comprehensive Beginner
1 TON

Views
12184

Telegram
 
Machine Learning A Comprehensive Beginner's Guide
Author: Akshay B R, Sini Raj Pulari,T S Murugesh, Shriram K Vasudevan
Year: 2025
Format: PDF
File size: 47.7 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning A Comprehensive Beginner's Guide" is a comprehensive guide that provides a detailed overview of machine learning, from its basic concepts to advanced techniques. The book covers various aspects of machine learning, including supervised and unsupervised learning, neural networks, deep learning, and natural language processing. It also discusses the importance of data preprocessing, feature selection, and model evaluation, as well as the challenges and limitations of machine learning. The author emphasizes the need to develop a personal paradigm for understanding the technological process of developing modern knowledge as the basis for the survival of humanity and the unity of people in a warring state. The book begins by introducing the concept of machine learning and its importance in today's world. The author explains how machine learning has revolutionized many fields such as healthcare, finance, marketing, and transportation. He highlights the potential of machine learning to improve decision-making processes and automate tasks, making it an essential tool for professionals in various industries. The author then delves into the history of machine learning, tracing its evolution from simple algorithms to complex neural networks. The book's second chapter focuses on the fundamental concepts of machine learning, including supervised and unsupervised learning, regression, classification, clustering, and dimensionality reduction. The author provides examples and exercises to help readers understand these concepts and their practical applications.
Книга «Machine arning A Comprehensive Beginner's Guide» («Машинное обучение - всеобъемлющее руководство для начинающих») представляет собой исчерпывающее руководство, в котором содержится подробный обзор машинного обучения, от его основных концепций до передовых методов. Книга охватывает различные аспекты машинного обучения, включая обучение с учителем и без учителя, нейронные сети, глубокое обучение и обработку естественного языка. В нем также обсуждается важность предварительной обработки данных, выбора функций и оценки модели, а также проблемы и ограничения машинного обучения. Автор подчеркивает необходимость выработки личностной парадигмы понимания технологического процесса развития современного знания как основы выживания человечества и единства людей в воюющем государстве. Книга начинается с введения понятия машинного обучения и его важности в современном мире. Автор объясняет, как машинное обучение произвело революцию во многих областях, таких как здравоохранение, финансы, маркетинг и транспорт. Он подчеркивает потенциал машинного обучения для улучшения процессов принятия решений и автоматизации задач, что делает его важнейшим инструментом для профессионалов в различных отраслях. Затем автор углубляется в историю машинного обучения, прослеживая его эволюцию от простых алгоритмов к сложным нейронным сетям. Вторая глава книги посвящена фундаментальным концепциям машинного обучения, включая обучение с учителем и без учителя, регрессию, классификацию, кластеризацию и уменьшение размерности. Автор приводит примеры и упражнения, которые помогут читателям понять эти понятия и их практическое применение.
''

You may also be interested in:

Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Machine Learning A Comprehensive Beginner|s Guide
Machine Learning A Comprehensive Beginner|s Guide
Machine Learning A Comprehensive Beginner|s Guide
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Machine Learning with Python A Comprehensive Guide To Algorithms, Deep Learning Techniques, And Practical Applications
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning with Python A Comprehensive Guide
The Comprehensive Guide to Machine Learning Algorithms and Techniques
The Comprehensive Guide to Machine Learning Algorithms and Techniques
AI Advanced Machine Learning for Finance: A Comprehensive Guide with Python
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Supervised Machine Learning with Python: A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Python Machine Learning: A Beginner|s Guide to Scikit-Learn
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Evaluating Machine Learning Models A Beginner|s Guide to Key Concepts and Pitfalls
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
AI and ML for Coders A Comprehensive Guide to Artificial Intelligence and Machine Learning Techniques, Tools, Real-World Applications, and Ethical Considerations for Modern Programmers
AI and ML for Coders A Comprehensive Guide to Artificial Intelligence and Machine Learning Techniques, Tools, Real-World Applications, and Ethical Considerations for Modern Programmers
Machine Learning Mastery: A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation