BOOKS - Deep Learning in Medical Image Analysis Recent Advances and Future Trends
Deep Learning in Medical Image Analysis Recent Advances and Future Trends - R. Indrakumari, T. Ganesh Kumar, D. Murugan, Sherimon P.C. 2025 PDF CRC Press BOOKS
1 TON

Views
16141

Telegram
 
Deep Learning in Medical Image Analysis Recent Advances and Future Trends
Author: R. Indrakumari, T. Ganesh Kumar, D. Murugan, Sherimon P.C.
Year: 2025
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: The medical field has witnessed significant advancements in recent years due to deep learning techniques. This book provides a comprehensive overview of the current state of deep learning research in medical image analysis, highlighting its applications, challenges, and future trends. It covers various aspects of deep learning, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), transfer learning, and more. The book also discusses the limitations and potential risks associated with these techniques. The book begins by exploring the fundamentals of deep learning and its application to medical image analysis, followed by an examination of the current state of the field, including the most recent developments and breakthroughs. It then delves into the challenges and limitations of deep learning in medical image analysis, such as data quality, labeling, and interpretability. Finally, it concludes with a discussion of the future trends and potential directions for deep learning research in medical image analysis. The book is intended for researchers, practitioners, and students interested in the intersection of deep learning and medical imaging. It serves as a valuable resource for those seeking to understand the current state of the field and its future trajectory. Book Outline: I.
В последние годы в области медицины были достигнуты значительные успехи благодаря методам глубокого обучения. Эта книга содержит всесторонний обзор текущего состояния исследований в области глубокого обучения в области анализа медицинских изображений, освещая его применение, проблемы и будущие тенденции. Он охватывает различные аспекты глубокого обучения, включая сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), генеративные состязательные сети (GAN), обучение передаче и многое другое. В книге также обсуждаются ограничения и потенциальные риски, связанные с этими методами. Книга начинается с изучения основ глубокого обучения и его применения к анализу медицинских изображений, после чего следует изучение текущего состояния области, включая самые последние разработки и прорывы. Затем он углубляется в проблемы и ограничения глубокого обучения в анализе медицинских изображений, такие как качество данных, маркировка и интерпретируемость. Наконец, он завершается обсуждением будущих тенденций и потенциальных направлений исследований глубокого обучения в области анализа медицинских изображений. Книга предназначена для исследователей, практиков и студентов, заинтересованных в пересечении глубокого обучения и медицинской визуализации. Он служит ценным ресурсом для тех, кто стремится понять текущее состояние месторождения и его будущую траекторию. Очерк книги: И.
''

You may also be interested in:

Deep Learning in Medical Image Processing and Analysis
Deep Learning in Medical Image Processing and Analysis
Deep Learning for Medical Image Analysis, 2nd Edition
Deep Learning for Medical Image Analysis, 2nd Edition
Deep Learning in Medical Image Processing and Analysis (Healthcare Technologies)
Deep Learning in Medical Image Analysis Recent Advances and Future Trends
Deep Learning for Medical Image Analysis (The MICCAI Society book Series)
Deep Learning in Medical Image Analysis Recent Advances and Future Trends
Deep Learning in Medical Image Analysis: Recent Advances and Future Trends (Artificial Intelligence in Smart Healthcare Systems)
Deep Learning Applications in Medical Image Segmentation Overview, Approaches, and Challenges
Deep Learning Applications in Image Analysis (Studies in Big Data Book 129)
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Image Processing and Machine Learning, Volume 2 Advanced Topics in Image Analysis and Machine Learning
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Deep Learning for Image Processing Applications
Digital Image Processing and Analysis Computer Vision and Image Analysis, 4th Edition
Digital Image Processing and Analysis Computer Vision and Image Analysis, 4th Edition
Deep Learning Theory, Architectures and Applications in Speech, Image and Language Processing
Deep Learning Theory, Architectures and Applications in Speech, Image and Language Processing
Deep Learning and Medical Applications (Mathematics in Industry Book 40)
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Computer Vision and Machine Intelligence in Medical Image Analysis: International Symposium, ISCMM 2019 (Advances in Intelligent Systems and Computing Book 992)
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Fusion of Artificial Intelligence and Machine Learning for Advanced Image Processing, Data Analysis, and Cyber Security
Hybrid Image Processing Methods for Medical Image Examination
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Medical Image Synthesis: Methods and Clinical Applications (Imaging in Medical Diagnosis and Therapy)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python