BOOKS - SCIENCE AND STUDY - Combinatorial Inference in Geometric Data Analysis
Combinatorial Inference in Geometric Data Analysis - Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 PDF CRC Press BOOKS SCIENCE AND STUDY
1 TON

Views
89904

Telegram
 
Combinatorial Inference in Geometric Data Analysis
Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand
Year: 2019
Format: PDF
File size: 10,42 MB
Language: ENG



Pay with Telegram STARS
Book Description: Combinatorial Inference in Geometric Data Analysis Author: Brigitte Le Roux, Solene Bienaise, Jean-Luc Durand 2019 269 CRC Press Summary: Combinatorial Inference in Geometric Data Analysis provides an overview of multidimensional statistical inference methods applicable to clouds of points that do not assume any knowledge of the data-generating process or distribution and are not based on random modeling but rather on permutation procedures recasting in a combinatorial framework. This book focuses on the need to study and understand the technological evolution process, the need for a personal paradigm for perceiving the technological development of modern knowledge as the basis for human survival and unity in a warring state. The text begins with an introduction to geometric data analysis, which is a set of observations that can be conceptualized as a Euclidean cloud of points. The author explains how this approach differs from traditional statistics and highlights its advantages in handling complex data sets. The book then delves into the principles of combinatorial inference, discussing various techniques such as the nearest neighbor algorithm and the k-d tree algorithm.
Комбинаторный вывод в анализе геометрических данных Автор: Брижит Ле Ру, Солен Бьенез, Жан-Люк Дюран 2019 269 CRC Резюме прессы: Комбинаторный вывод в анализе геометрических данных обеспечивает обзор многомерных статистических методов вывода, применимых к облакам точек, которые не предполагают каких-либо знаний о процессе или распределении генерации данных и основаны не на случайном моделировании, а скорее на процедурах перестановки, изменяющихся в комбинаторной структуре. Эта книга посвящена необходимости изучения и понимания процесса технологической эволюции, необходимости личностной парадигмы восприятия технологического развития современных знаний как основы выживания человека и единства в воюющем государстве. Текст начинается с введения в анализ геометрических данных, который представляет собой набор наблюдений, которые могут быть концептуализированы как евклидово облако точек. Автор объясняет, чем этот подход отличается от традиционной статистики, и подчеркивает его преимущества в работе со сложными наборами данных. Затем книга углубляется в принципы комбинаторного вывода, обсуждая различные техники, такие как алгоритм ближайшего соседа и алгоритм k-d дерева.
Conclusion combinatoire dans l'analyse des données géométriques Auteur : Brigitte Roux, Solène Bienez, Jean-Luc Durand 2019 269 CRC Résumé de la presse : La conclusion combinatoire dans l'analyse des données géométriques donne un aperçu des méthodes statistiques de sortie multidimensionnelles applicables aux nuages de points qui n'impliquent aucune connaissance du processus ou de la distribution de la génération de données et ne sont pas basées sur une modélisation aléatoire, mais plutôt sur des procédures de permutation qui changent dans la structure combinatoire. Ce livre traite de la nécessité d'étudier et de comprendre le processus d'évolution technologique, de la nécessité d'un paradigme personnel de la perception du développement technologique des connaissances modernes comme base de la survie humaine et de l'unité dans un État en guerre. texte commence par une introduction à l'analyse des données géométriques, qui est un ensemble d'observations qui peuvent être conceptualisées comme un nuage euclidien de points. L'auteur explique en quoi cette approche diffère des statistiques traditionnelles et souligne ses avantages à travailler avec des ensembles de données complexes. livre est ensuite approfondi dans les principes de la conclusion combinatoire, en discutant de différentes techniques telles que l'algorithme du voisin le plus proche et l'algorithme k-d de l'arbre.
Uscita combinata nell'analisi dei dati geometrici Autore: Brigitte Roux, Solain Bienez, Jean-Luc Duran 2019 269 CRC Riepilogo stampa: L'output di combinazione nell'analisi dei dati geometrici fornisce una panoramica dei metodi di output statistici multi-dimensioni applicabili alle nuvole dei punti che non prevedono alcuna conoscenza del processo o della distribuzione della generazione dei dati e che non si basano su simulazioni casuali, ma piuttosto su procedure di riposizionamento che cambiano nella struttura di combinazione. Questo libro è dedicato alla necessità di studiare e comprendere il processo di evoluzione tecnologica, la necessità di un paradigma personale di percezione dello sviluppo tecnologico delle conoscenze moderne come base della sopravvivenza dell'uomo e dell'unità in uno stato in guerra. Il testo inizia con l'introduzione di dati geometrici nell'analisi, che è un insieme di osservazioni che possono essere concettualizzate come una nuvola di punti euclidico. L'autore spiega come questo approccio sia diverso dalle statistiche tradizionali e evidenzia i suoi vantaggi nel gestire insiemi di dati complessi. Poi il libro approfondisce i principi di output combinatore, discutendo diverse tecniche, come l'algoritmo del vicino più vicino e l'algoritmo k-d albero.
Kombinatorische Inferenz in der geometrischen Datenanalyse Autor: Brigitte Roux, Solène Biénez, Jean-Luc Durand 2019 269 CRC Zusammenfassung der Presse: Die kombinatorische Inferenz in der geometrischen Datenanalyse bietet einen Überblick über mehrdimensionale statistische Inferenzmethoden, die auf Punktwolken anwendbar sind, die kein Wissen über den Prozess oder die Verteilung der Datengenerierung beinhalten und nicht auf zufälligen mulationen basieren, sondern auf Permutationsverfahren, die sich in der kombinatorischen Struktur ändern. Dieses Buch widmet sich der Notwendigkeit, den Prozess der technologischen Evolution zu studieren und zu verstehen, die Notwendigkeit eines persönlichen Paradigmas der Wahrnehmung der technologischen Entwicklung des modernen Wissens als Grundlage des menschlichen Überlebens und der Einheit in einem kriegführenden Staat. Der Text beginnt mit einer Einführung in die Analyse geometrischer Daten, bei der es sich um eine Reihe von Beobachtungen handelt, die als euklidische Punktwolke konzeptualisiert werden können. Der Autor erklärt, wie sich dieser Ansatz von traditionellen Statistiken unterscheidet, und hebt seine Vorteile im Umgang mit komplexen Datensätzen hervor. Das Buch taucht dann in die Prinzipien der kombinatorischen Inferenz ein und diskutiert verschiedene Techniken wie den Algorithmus des nächsten Nachbarn und den k-d-Algorithmus des Baums.
הסקה קומבינטורית בניתוח נתונים גאומטריים על ידי בריג 'יט לה רו, סולן ביאנז, ז'אן-לוק דורנד 2019 269 CRC Press סיכום: הסקה קומבינטורית בניתוח נתונים גאומטריים מספקת סקירה של שיטות הסקה סטטיסטיות רב-תחומיות המתאימות להצביע על עננים שאינם מניחים כל ידע על התהליך או הפצה של דור נתונים ואינם מבוססים על מודלים אקראיים, אלא על נוהלי פרמוטציה המשתנים במבנה קומבינטורי. ספר זה מוקדש לצורך לחקור ולהבין את תהליך האבולוציה הטכנולוגית, את הצורך בפרדיגמה אישית לתפיסת ההתפתחות הטכנולוגית של הידע המודרני כבסיס להישרדות ולאחדות האנושית במצב מלחמה. הטקסט מתחיל עם הקדמה לניתוח נתונים גאומטריים, שהם סט של תצפיות שניתן לתפיסה כענן נקודה אוקלידי. המחבר מסביר כיצד גישה זו שונה מהסטטיסטיקה המסורתית ומדגיש את יתרונותיה בעבודה עם נתונים מורכבים. לאחר מכן הספר מתעמק בעקרונות של הסקה קומבינטורית, ודן בטכניקות שונות כמו אלגוריתם השכן הקרוב ואלגוריתם עץ k-d.''
Geometrik veri analizinde kombinatoryal çıkarım Brigitte Roux, Solene Bienez, Jean-Luc Durand tarafından 2019 269 CRC Basın özeti: Geometrik veri analizindeki kombinatoryal çıkarım, veri üretiminin süreci veya dağılımı hakkında herhangi bir bilgi sahibi olmayan ve rastgele modellemeye değil, kombinatoryal bir yapıda değişen permütasyon prosedürlerine dayanan nokta bulutlarına uygulanabilir çok değişkenli istatistiksel çıkarım yöntemlerine genel bir bakış sağlar. Bu kitap, teknolojik evrim sürecini inceleme ve anlama ihtiyacına, modern bilginin teknolojik gelişimini savaşan bir durumda insanın hayatta kalması ve birliği için temel olarak algılamak için kişisel bir paradigma ihtiyacına ayrılmıştır. Metin, Öklid nokta bulutu olarak kavramsallaştırılabilen bir dizi gözlem olan geometrik veri analizine bir giriş ile başlar. Yazar, bu yaklaşımın geleneksel istatistiklerden nasıl farklı olduğunu açıklar ve karmaşık veri kümeleriyle çalışmadaki avantajlarını vurgular. Kitap daha sonra, en yakın komşu algoritması ve k-d ağacı algoritması gibi çeşitli teknikleri tartışarak kombinatoryal çıkarım ilkelerine girer.
الاستدلال التوافقي في تحليل البيانات الهندسية بقلم بريجيت لو رو، سولين بينيز، جان لوك دوراند 2019 269 ملخص مطبعة CRC: يوفر الاستدلال التجميعي في تحليل البيانات الهندسية لمحة عامة عن طرق الاستدلال الإحصائي متعدد المتغيرات المطبقة على السحب النقطية التي لا تفترض أي معرفة بعملية أو توزيع توليد البيانات ولا تستند إلى النمذجة العشوائية، بل تستند إلى إجراءات التباديل المتغيرة في الهيكل التجميعي. هذا الكتاب مكرس للحاجة إلى دراسة وفهم عملية التطور التكنولوجي، والحاجة إلى نموذج شخصي لتصور التطور التكنولوجي للمعرفة الحديثة كأساس لبقاء الإنسان ووحدته في حالة حرب. يبدأ النص بمقدمة لتحليل البيانات الهندسية، وهي مجموعة من الملاحظات التي يمكن تصورها على أنها سحابة نقطة إقليدية. يشرح المؤلف كيف يختلف هذا النهج عن الإحصاءات التقليدية ويسلط الضوء على مزاياه في العمل مع مجموعات البيانات المعقدة. ثم يتعمق الكتاب في مبادئ الاستدلال التوافقي، ويناقش تقنيات مختلفة مثل خوارزمية أقرب جار وخوارزمية شجرة k-d.
기하학적 데이터 분석의 조합 추론 Brigitte Roux, Solene Bienez, Jean-Luc Durand 2019 269 CRC Press 요약: 기하학적 데이터 분석의 조합 추론은 데이터 생성의 프로세스 또는 분포에 대한 지식을 가정하지 않고 랜덤 모델링을 기반으로하지 않고 조합 구조에서 변경되는 순열 절차를 기반으로하는 포인트 클라우드에 적용 할 수있는 다변량 통계 추론 방법의 개요약. 이 책은 기술 진화 과정을 연구하고 이해해야 할 필요성, 전쟁 상태에서 인간 생존과 연합의 기초로서 현대 지식의 기술 개발에 대한 인식을위한 개인적인 패러다임의 필요성에 전념하고 있습니다. 텍스트는 기하학적 데이터 분석에 대한 소개로 시작하는데, 이는 유클리드 포인트 클라우드로 개념화 할 수있는 일련의 관측치입니다. 저자는이 접근 방식이 기존 통계와 어떻게 다른지 설명하고 복잡한 데이터 세트 작업에서 장점을 강조합니다. 그런 다음이 책은 가장 가까운 이웃 알고리즘 및 k-d 트리 알고리즘과 같은 다양한 기술을 논의하면서 조합 추론의 원리를 탐구합니다.
幾何学的データ分析における組み合わせ推論Brigitte Roux、 Solene Bienez、 Jean-Luc Durand 2019 269 CRCプレス要約: 幾何学的データ解析における組合せ推論は、データ生成のプロセスまたは分布の知識を仮定せず、ランダムモデリングに基づいているのではなく、組み合わせ構造において変化する多変量の統計推論方法の概要を提供する。この本は、科学技術の進化の過程を研究し、理解する必要性に捧げられています。テキストは、ユークリッド点群として概念化できる一連の観測群である幾何学的データ解析の紹介から始まります。著者は、このアプローチが従来の統計とどのように異なるかを説明し、複雑なデータセットを操作する際の利点を強調しています。次に、この本は組合せ推論の原理を掘り下げ、近傍アルゴリズムやk-dツリーのアルゴリズムのような様々な手法について論じている。
幾何數據分析的組合推理作者:Brigitte Roux、Solen Bienez、Jean-Luc Durand 2019 269 CRC新聞摘要: 幾何數據分析中的組合推理提供了適用於點雲的多維統計推理方法的概述,這些方法不涉及對數據生成過程或分布的任何了解,並且不是基於隨機建模,而是基於組合結構中變化的排列過程。本書著重於研究和理解技術進化過程的必要性,將現代知識的技術發展視為人類生存和交戰國家團結的基礎的個人範式的必要性。文本首先介紹了幾何數據,該幾何數據是一組可以概念化為歐幾裏得點雲的觀察結果。作者解釋了這種方法與傳統統計數據有何不同,並強調了其在處理復雜數據集方面的優勢。然後,本書深入研究組合推理的原理,討論了各種技術,例如最近的鄰居算法和k-d樹算法。

You may also be interested in:

Combinatorial Inference in Geometric Data Analysis
Geometric Harmonic Analysis IV: Boundary Layer Potentials in Uniformly Rectifiable Domains, and Applications to Complex Analysis (Developments in Mathematics, 75)
An Introduction to Combinatorial Analysis
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Python Data Analysis Transforming Raw Data into Actionable Intelligence with Python|s Data Analysis Capabilities
Hands-On Data Analysis with Pandas Efficiently perform data collection, wrangling, analysis, and visualization using Python
Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
Ultimate Python Libraries for Data Analysis and Visualization: Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, … and Statistical Analysis (English
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn A Hands-On Guide with Projects and Case Studies
Data Analysis Foundations with Python: Master Python and Data Analysis using NumPy, Pandas, Matplotlib, and Seaborn: A Hands-On Guide with Projects and Case Studies.
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Annals of Discrete Mathematics, Volume 25: Analysis and Design of Algorithms for Combinatorial Problems
Ultimate Python Libraries for Data Analysis and Visualization Leverage Pandas, NumPy, Matplotlib, Seaborn, Julius AI and No-Code Tools for Data Acquisition, Visualization, and Statistical Analysis
Python for Data Analysis A Basic Guide for Beginners to Learn the Language of Python Programming Codes Applied to Data Analysis with Libraries Software Pandas, Numpy, and IPython
Geometric Complex Analysis
Python For Data Analysis A Step-by-Step Guide to Pandas, NumPy, and SciPy for Data Wrangling, Analysis, and Visualization
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning
Algorithms For Analysis, Inference, And Control Of Boolean Networks
Python for Data Analysis A Complete Crash Course on Python for Data Science to Learn Essential Tools and Python Libraries, NumPy, Pandas, Jupyter Notebook, Analysis and Visualization
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Causal Inference for Data Science (Final Release)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Evidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to Trading Signals
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis