BOOKS - Mathematical Engineering of Deep Learning
Mathematical Engineering of Deep Learning - Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
43508

Telegram
 
Mathematical Engineering of Deep Learning
Author: Benoit Liquet, Sarat Moka, Yoni Nazarathy
Year: 2025
Format: PDF | EPUB
File size: 39.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: Mathematical Engineering of Deep Learning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of Deep Learning provides a comprehensive and concise overview of Deep Learning using mathematical concepts. The book offers a self-contained background on Machine Learning and optimization algorithms, progressing through the fundamental ideas of Deep Learning, including deep neural networks, convolutional models, recurrent models, long-short term memory, the attention mechanism, transformers, variational autoencoders, diffusion models, generative adversarial networks, and reinforcement learning. These concepts are presented using simple mathematical equations, along with concise descriptions of relevant tricks of the trade. The content serves as the foundation for state-of-the-art Artificial Intelligence applications involving images, sound, large language models, and other domains.
Mathematical Engineering of Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of Deep arning предоставляет всесторонний и краткий обзор Deep arning с использованием математических концепций. Книга предлагает автономный фон по машинному обучению и алгоритмам оптимизации, продвигаясь через фундаментальные идеи глубокого обучения, включая глубокие нейронные сети, сверточные модели, рекуррентные модели, долговременную кратковременную память, механизм внимания, трансформаторы, вариационные автоэнкодеры, диффузионные модели, генеративные состязательные сети и обучение с подкреплением. Эти понятия представлены с помощью простых математических уравнений вместе с краткими описаниями соответствующих уловок торговли. Контент служит основой для современных приложений искусственного интеллекта, включающих изображения, звук, большие языковые модели и другие домены.
Engineering mathématique de Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages : 415 CRC Press Summary : Mathematical Engineering de Deep arning fournit un aperçu complet et rapide de Deep arning concepts mathématiques. livre offre un fond autonome sur l'apprentissage automatique et les algorithmes d'optimisation, en progressant à travers les idées fondamentales de l'apprentissage profond, y compris les réseaux neuronaux profonds, les modèles convolutifs, les modèles récurrents, la mémoire à long terme, le mécanisme d'attention, les transformateurs, les encodeurs variés, les modèles de diffusion, les réseaux de compétition générative et l'apprentissage avec des renforts. Ces concepts sont présentés à l'aide d'équations mathématiques simples ainsi que de brèves descriptions des astuces commerciales correspondantes. contenu sert de base aux applications modernes de l'intelligence artificielle, y compris les images, le son, les grands modèles linguistiques et d'autres domaines.
Ingeniería matemática de Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Enh gineering of Deep arning proporciona una visión general completa y concisa de Deep arning usando conceptos matemáticos. libro ofrece un fondo autónomo sobre aprendizaje automático y algoritmos de optimización, avanzando a través de ideas fundamentales de aprendizaje profundo, incluyendo redes neuronales profundas, modelos de perforación, modelos recurrativos, memoria de corto plazo a largo plazo, mecanismo de atención, transformadores, codificadores de auto variación, modelos de difusión, redes competitivas generadoras y entrenamiento con refuerzos. Estos conceptos se presentan a través de simples ecuaciones matemáticas junto con breves descripciones de los trucos correspondientes del comercio. contenido sirve de base para aplicaciones modernas de inteligencia artificial que incluyen imágenes, sonido, grandes modelos de lenguaje y otros dominios.
Mathematical Engineering of Deep arning Benefit Liquet, Sarat Moka, Yoni Nazarathy 2025 Page: 415 CRC Press Summit: Mathematical Engineering of Deep arning una breve panoramica di Deep arning con concetti matematici. Il libro offre uno sfondo autonomo sull'apprendimento automatico e sugli algoritmi di ottimizzazione, promuovendo idee fondamentali di apprendimento profondo, tra cui reti neurali profonde, modelli compressi, modelli ricettivi, memoria a lungo termine a lungo termine, meccanismo di attenzione, trasformatori, autocoder di variazione, modelli di diffusione, reti di competizione generative e apprendimento con rinforzi. Questi concetti sono presentati attraverso semplici equazioni matematiche insieme a brevi descrizioni dei rispettivi trucchi commerciali. I contenuti sono la base per applicazioni avanzate di intelligenza artificiale che includono immagini, audio, grandi modelli linguistici e altri domini.
Mathematical Engineering of Deep arning Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Seiten: 415 CRC Zusammenfassung: Mathematical Engineering of Deep arning bietet einen umfassenden und prägnanten Überblick über Deep arning mit mathematischen Konzepten. Das Buch bietet einen autonomen Hintergrund für maschinelles rnen und Optimierungsalgorithmen, der durch grundlegende Ideen für Deep arning wie tiefe neuronale Netzwerke, Faltungsmodelle, wiederkehrende Modelle, Langzeitkurzzeitgedächtnis, Aufmerksamkeitsmechanismus, Transformatoren, variable Autoencoder, Diffusionsmodelle, generative Wettbewerbsnetzwerke und verstärkendes rnen voranschreitet. Diese Konzepte werden durch einfache mathematische Gleichungen zusammen mit kurzen Beschreibungen der entsprechenden Tricks des Handels dargestellt. Der Inhalt dient als Grundlage für moderne KI-Anwendungen, darunter Bilder, Ton, große Sprachmodelle und andere Domänen.
Mathematical Engineering of Deep arning Benoit, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Mathematical Engineering of of of of of DeEEEMMMMmatMMatmatmatematic matic estematic estestestematical leing leing leing eStecing esteStecing estementing הספר מציע רקע אוטונומי על אלגוריתמי למידת מכונה ואופטימיזציה, המתקדמים באמצעות רעיונות בסיסיים של למידה עמוקה, כולל רשתות עצביות עמוקות, מודלים קונבנציונליים, מודלים חוזרים, זיכרון לטווח ארוך, מנגנון קשב, שנאים, מודלים של דיפוזיה, רשתות יריבות מחוזקות ולמידה של חיזוק. מושגים אלה מיוצגים על ידי משוואות מתמטיות פשוטות יחד עם תיאורים קצרים של הטריקים של הסחר. תוכן משמש כבסיס ליישומי בינה מלאכותית מודרניים, כולל תמונות, סאונד, מודלים גדולים של שפות ותחומים אחרים.''
Derin arning Matematik Mühendisliği Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Sayfalar: 415 CRC Basın Özeti: Derin arning Matematik Mühendisliği, matematiksel kavramları kullanarak Derin arning'e kapsamlı ve özlü bir genel bakış sağlar. Kitap, derin sinir ağları, konvolüsyonel modeller, tekrarlayan modeller, uzun süreli kısa süreli bellek, dikkat mekanizması, transformatörler, varyasyonel otomatik kodlayıcılar, difüzyon modelleri dahil olmak üzere derin öğrenmenin temel fikirleri ile ilerleyen, makine öğrenimi ve optimizasyon algoritmaları üzerine özerk bir arka plan sunmaktadır. üretken düşmanlık ağları ve takviye öğrenme. Bu kavramlar, ticaretin ilgili hilelerinin kısa açıklamalarıyla birlikte basit matematiksel denklemlerle temsil edilir. İçerik, görüntüler, ses, büyük dil modelleri ve diğer alanlar dahil olmak üzere modern yapay zeka uygulamalarının temelini oluşturur.
الهندسة الرياضية للتعلم العميق Benoit Liquet, Sarat Moka, Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: الهندسة الرياضية للتعلم العميق تقدم لمحة شاملة وموجزة عن التعلم العميق باستخدام المفاهيم الرياضية. يقدم الكتاب خلفية مستقلة عن خوارزميات التعلم الآلي والتحسين، ويتقدم من خلال الأفكار الأساسية للتعلم العميق، بما في ذلك الشبكات العصبية العميقة، والنماذج التلافيفية، والنماذج المتكررة، والذاكرة قصيرة المدى طويلة المدى، وآلية الانتباه، والمحولات، والمشفرات الذاتية المتنوعة، نماذج الانتشار، وشبكات الخصومة المولدة، والتعلم المعزز. يتم تمثيل هذه المفاهيم من خلال معادلات رياضية بسيطة جنبا إلى جنب مع وصف موجز للحيل ذات الصلة من التجارة. يعمل المحتوى كأساس لتطبيقات الذكاء الاصطناعي الحديثة، بما في ذلك الصور والصوت ونماذج اللغة الكبيرة والمجالات الأخرى.
딥 러닝 베누아 리케의 수학 공학, Sarat Moka, Yoni Nazarathy 2025 페이지: 415 CRC 프레스 요약: 딥 러닝의 수학 공학은 수학적 개념을 사용하여 딥 러닝에 대한 포괄적이고 간결한 개요를 제공합니다. 이 책은 심층 신경망, 컨볼 루션 모델, 반복 모델, 장기 기억, 주의 메커니즘, 변압기, 변형 자동 인코더, 확산 모델, 생성 적대적 네트워크 및 강화 학습. 이러한 개념은 간단한 수학적 방정식과 거래의 각 트릭에 대한 간단한 설명으로 표시됩니다. 콘텐츠는 이미지, 사운드, 대형 언어 모델 및 기타 도메인을 포함한 최신 인공 지능 응용 프로그램의 기초가됩니다.
Deep arningの数学工学Benoit Liquet、 Sarat Moka、 Yoni Nazarathy 2025 Pages: 415 CRC Press Summary: Deep arningの数学的概念を用いたDeep arningの包括的かつ簡潔な概要を提供します。この本は、深層ニューラルネットワーク、畳み込みモデル、再発モデル、長期短期記憶、注意メカニズム、変圧器、変動オートエンコーダ、拡散モデル、生成的な敵対的ネットワーク、強化学習など、深層学習の基本的なアイデアを通じて進歩している機械学習と最適化アルゴリズムに関する自律的な背景を提供しています。これらの概念は、貿易のそれぞれのトリックの簡単な説明とともに、単純な数学的方程式によって表される。コンテンツは、画像、サウンド、大きな言語モデル、その他のドメインを含む、現代の人工知能アプリケーションの基礎となります。
深度學習數學工程Benoit Liquet,Sarat Moka,Yoni Nazarathy 2025頁:415 CRC新聞摘要:深度學習數學工程提供全面而簡短的評論使用數學概念學習。該書提供了有關機器學習和優化算法的獨立背景,並通過深度學習的基本思想發展,包括深度神經網絡,卷積模型,遞歸模型,長期短期記憶,註意力機制,變壓器,變分自動編碼器,擴散模型,生成對抗網絡和強化學習。這些概念通過簡單的數學方程以及相關貿易策略的簡要描述來表示。內容是現代人工智能應用程序的基礎,包括圖像,聲音,大型語言模型和其他域。

You may also be interested in:

Mathematical Engineering of Deep Learning
Mathematical Engineering of Deep Learning
Automated Software Engineering: A Deep Learning-Based Approach (Learning and Analytics in Intelligent Systems Book 8)
Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python
Engineering Deep Learning Systems
Pro Deep Learning with TensorFlow 2.0 A Mathematical Approach to Advanced Artificial Intelligence in Python, Second Edition
Pro Deep Learning with TensorFlow 2.0 A Mathematical Approach to Advanced Artificial Intelligence in Python, Second Edition
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
Deep Learning Applications and Intelligent Decision Making in Engineering (Advances in Computational Intelligence and Robotics)
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Machine Learning for Sustainable Manufacturing in Industry 4.0 (Mathematical Engineering, Manufacturing, and Management Sciences)
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Mathematical Techniques An Introduction for the Engineering, Physical, and Mathematical Sciences 4th Edition
Mathematical Techniques An Introduction for the Engineering, Physical, and Mathematical Sciences 4th Edition
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mathematical Modeling and Computation of Real-Time Problems An Interdisciplinary Approach (Mathematical Engineering, Manufacturing, and Management Sciences)
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning in Gaming and Animations Principles and Applications (Explainable AI (XAI) for Engineering Applications)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python