BOOKS - DevOps for Data Science
DevOps for Data Science - Alex K Gold  PDF  BOOKS
3 TON

Views
63923

Telegram
 
DevOps for Data Science
Author: Alex K Gold
Format: PDF
File size: PDF 17 MB
Language: English



Pay with Telegram STARS
The book highlights the challenges faced by data scientists in collaborating with or delivering their work to the people and systems that matter, and how the principles and tools of DevOps can be applied to create and deliver production-grade data science projects in Python and R. The book is divided into three sections: 1. Building Data Science Projects that Deploy to Production with No Frills or Fuss: This section explores how to build data science projects that can be reliably deployed to production without any hassles or complications. 2. Rudiments of Administering a Server: This section covers the basics of server administration, including Linux application and network administration, to provide a solid foundation for deploying data science projects. 3.
В книге освещаются проблемы, с которыми сталкиваются специалисты по анализу данных при сотрудничестве или предоставлении своей работы людям и системам, которые имеют значение, а также то, как принципы и инструменты DevOps могут применяться для создания и предоставления проектов по анализу данных производственного уровня на Python и R. Книга разделена на три раздела: 1. Построение проектов Data Science, которые развертываются в производство без излишеств и суеты: в этом разделе рассматривается, как создавать проекты Data Science, которые могут быть надежно развернуты в производство без каких-либо проблем или осложнений. 2. Основы администрирования сервера: В этом разделе рассматриваются основы администрирования серверов, включая администрирование приложений и сетей Linux, что обеспечивает надежную основу для развертывания проектов в области науки о данных. 3.
livre met en lumière les défis auxquels sont confrontés les analystes de données pour collaborer ou fournir leur travail aux personnes et aux systèmes qui comptent, ainsi que la façon dont les principes et les outils DevOps peuvent être appliqués pour créer et fournir des projets d'analyse de données de niveau de production sur Python et R. livre est divisé en trois sections : 1. Construire des projets Data Science qui se déploient dans la production sans excès ni agitation : cette section examine comment créer des projets Data Science qui peuvent être déployés en toute sécurité dans la production sans aucun problème ou complication. 2. Bases de l'administration des serveurs : Cette section traite des bases de l'administration des serveurs, y compris l'administration des applications et des réseaux Linux, ce qui fournit une base solide pour le déploiement de projets de science des données. 3.
libro destaca los desafíos que enfrentan los analistas de datos al colaborar o proporcionar su trabajo a las personas y sistemas que importan, y cómo los principios y herramientas de DevOps pueden aplicarse para crear y proporcionar proyectos de análisis de datos de nivel de producción en Python y R. libro se divide en tres secciones: 1. Construcción de proyectos de Data Science que se despliegan en la producción sin excesos ni vanidades: esta sección aborda cómo crear proyectos de Data Science que puedan desplegarse de forma fiable en la producción sin ningún problema o complicación. 2. Fundamentos de la administración de servidores: Esta sección aborda los fundamentos de la administración de servidores, incluida la administración de aplicaciones y redes Linux, lo que proporciona una base sólida para implementar proyectos de ciencia de datos. 3.
Nel libro vengono illustrati i problemi che gli esperti di analisi dei dati affrontano quando collaborano o forniscono il proprio lavoro alle persone e ai sistemi che contano, nonché come i principi e gli strumenti del sistema possono essere utilizzati per creare e fornire progetti di analisi dei dati di livello produttivo su Python e R. Il libro è suddiviso in tre sezioni: 1. Creazione di progetti Data Science che vengono implementati in produzione senza problemi o complicazioni, in questa sezione vengono descritti come creare progetti Data Science che possono essere implementati in modo affidabile senza problemi o complicazioni. 2. Base per l'amministrazione del server: questa sezione esamina le basi dell'amministrazione dei server, inclusa l'amministrazione delle applicazioni e delle reti Linux, fornendo una base affidabile per l'implementazione dei progetti di scienza dei dati. 3.
Das Buch beleuchtet die Herausforderungen, mit denen Datenwissenschaftler konfrontiert sind, wenn sie mit Menschen und Systemen zusammenarbeiten oder ihre Arbeit zur Verfügung stellen, die wichtig sind, und wie DevOps-Prinzipien und -Tools angewendet werden können, um Datenanalyseprojekte auf Produktionsebene in Python und R zu erstellen und bereitzustellen. Das Buch ist in drei Abschnitte unterteilt: 1. Aufbau von Data-Science-Projekten, die ohne Schnickschnack und Hektik in die Produktion eingeführt werden: In diesem Abschnitt wird untersucht, wie Data-Science-Projekte erstellt werden können, die ohne Probleme oder Komplikationen zuverlässig in die Produktion eingeführt werden können. 2. Grundlagen der Serververwaltung: Dieser Abschnitt behandelt die Grundlagen der Serververwaltung, einschließlich der Verwaltung von Linux-Anwendungen und -Netzwerken, und bietet eine solide Grundlage für die Bereitstellung von Data-Science-Projekten. 3.
''
Kitap, veri bilimcilerin işbirliği yaparken veya çalışmalarını önemli insanlara ve sistemlere sunarken karşılaştıkları zorlukları ve Python ve R'de üretim düzeyinde veri analizi projeleri oluşturmak ve sağlamak için DevOps ilkelerinin ve araçlarının nasıl uygulanabileceğini vurgulamaktadır. Kitap üç bölüme ayrılmıştır: 1. Fırfırlar veya yaygara olmadan üretime dağıtılan Bina Veri Bilimi projeleri: Bu bölüm, herhangi bir sorun veya komplikasyon olmadan üretime güvenilir bir şekilde dağıtılabilen Veri Bilimi projelerinin nasıl oluşturulacağına bakar. 2. Sunucu Yönetimi Temelleri: Bu bölüm, veri bilimi projelerini dağıtmak için sağlam bir temel sağlayan Linux uygulamalarının ve ağlarının yönetimi de dahil olmak üzere sunucu yönetiminin temellerini kapsar. 3.
يسلط الكتاب الضوء على التحديات التي يواجهها علماء البيانات عند التعاون أو تقديم عملهم للأشخاص والأنظمة المهمة، وكيف يمكن تطبيق مبادئ وأدوات DevOps لإنشاء وتوفير مشاريع تحليل البيانات على مستوى الإنتاج في Python و R. ينقسم الكتاب إلى ثلاثة أقسام: 1. مشاريع بناء علوم البيانات التي تنتشر في الإنتاج دون رتوش أو ضجة: يبحث هذا القسم في كيفية بناء مشاريع علوم البيانات التي يمكن نشرها بشكل موثوق في الإنتاج دون أي مشاكل أو مضاعفات. 2. أساسيات إدارة الخواديم: يغطي هذا القسم أساسيات إدارة الخواديم، بما في ذلك إدارة تطبيقات وشبكات لينكس، التي توفر أساسًا متينًا لنشر مشاريع علوم البيانات. 3.

You may also be interested in:

DevOps for Data Science
DevOps for Data Science
DevOps for Data Science
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud, Global Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
The Decision Maker|s Handbook to Data Science AI and Data Science for Non-Technical Executives, Managers, and Founders, 3rd Edition
Learn Data Science Fundamentals A Beginner|s Guide To Data Science Programs, Analysis And Visualization
Big Data and Social Science Data Science Methods and Tools for Research and Practice, 2nd Edition
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Ultimate Data Science Programming in Python Master data science libraries with 300+ programs, 2 projects, and EDA GUI tools
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Intro to Python for Computer Science and Data Science Learning to Program with AI, Big Data and The Cloud
Data Science: A First Introduction (Chapman and Hall CRC Data Science Series)
Data Science A Comprehensive Beginners Guide to Learn the Realms of Data Science
Data Science A Comprehensive Beginner’s Guide to Learn About the Realms of Data Science from A-Z
Confident Data Science Discover the Essential Skills of Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Data Science: The Hard Parts: Techniques for Excelling at Data Science
Confident Data Science Discover the Essential Skills of Data Science
Data Science The Hard Parts Techniques for Excelling at Data Science
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
Python Data Science: Deep Learning Guide for Beginners with Data Science. Python Programming and Crush Course.
Textual Data Science with R (Chapman & Hall/CRC Computer Science & Data Analysis)
Python Data Science An Ultimate Guide for Beginners to Learn Fundamentals of Data Science Using Python
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal