BOOKS - Streamlit for Data Scienc
Streamlit for Data Scienc - Tyler Richards 2023 PDF  BOOKS
2 TON

Views
21418

Telegram
 
Streamlit for Data Scienc
Author: Tyler Richards
Year: 2023
Format: PDF
File size: PDF 8.8 MB
Language: English



Pay with Telegram STARS
Streamlit for Data Science: An Easy-to-Follow Guide to Creating Data Apps with Random Forest, Hugging Face, and GPT-3 Models Streamlit for Data Science: An Easy-to-Follow Guide to Creating Data Apps with Random Forest, Hugging Face, and GPT-3 Models is an essential guide for data scientists and machine learning enthusiasts who want to create dynamic web apps using Streamlit, a Python library that allows users to create interactive visualizations and deploy machine learning models quickly and easily. This second edition has been updated to include new features such as connecting Streamlit to data warehouses like Snowflake, integrating Hugging Face and OpenAI models into your apps, and creating apps on top of Streamlit databases. The book covers everything from setting up the development environment and creating basic Streamlit apps to more advanced topics such as deploying Streamlit apps with Streamlit Community Cloud, Hugging Face Spaces, and Heroku, and beautifying apps using themes and components. An Introduction to Streamlit Streamlit is a powerful Python library that allows you to create interactive visualizations and deploy machine learning models quickly and easily. In this chapter, we'll go over the basics of setting up your development environment and creating your first Streamlit app from scratch. We'll cover how to upload, download, and manipulate data, as well as how to use built-in and imported Python libraries for data visualization.
Рационализация для науки о данных: простое в использовании руководство по созданию приложений для данных с моделями случайного леса, обнимающего лица и GPT-3 Рационализация для науки о данных: Простое в использовании руководство по созданию приложений для работы с данными с помощью моделей Random Forest, Hugging Face и GPT-3 - это важное руководство для специалистов по анализу данных и энтузиастов машинного обучения, которые хотят создавать динамические веб-приложения с помощью Streamlit, библиотеки Python, которая позволяет пользователям создавать интерактивные визуализации и развертывать модели машинного обучения быстро и легко. Это второе издание было обновлено, чтобы включить новые функции, такие как подключение Streamlit к хранилищам данных, таким как Snowflake, интеграция моделей Hugging Face и OpenAI в ваши приложения и создание приложений поверх баз данных Streamlit. Книга охватывает все, от настройки среды разработки и создания базовых приложений Streamlit до более сложных тем, таких как развертывание приложений Streamlit с помощью Streamlit Community Cloud, Hugging Face Spaces и Heroku, а также украшение приложений с помощью тем и компонентов. Введение в Streamlit Streamlit - мощная библиотека на Python, позволяющая создавать интерактивные визуализации и быстро и легко развертывать модели машинного обучения. В этой главе мы рассмотрим основы настройки среды разработки и создания первого приложения Streamlit с нуля. Мы расскажем, как загружать, загружать и манипулировать данными, а также как использовать встроенные и импортированные библиотеки Python для визуализации данных.
Rationalisation pour la science des données : un guide facile à utiliser pour créer des applications de données avec des modèles de forêt aléatoire, de visage câlin et de GPT-3 Rationalisation pour la science des données : Un guide facile à utiliser pour créer des applications de données avec les modèles Random Forest, Hugging Face et GPT-3 est un guide important pour les analystes de données et les passionnés d'apprentissage automatique qui veulent créer des applications Web dynamiques avec Streamlit, la bibliothèque Python, qui permet aux utilisateurs de créer des visualisations interactives et de déployer des modèles d'apprentissage automatique rapidement et facilement. Cette deuxième édition a été mise à jour pour inclure de nouvelles fonctionnalités telles que la connexion Streamlit à des entrepôts de données tels que Snowflake, l'intégration des modèles Hugging Face et OpenAI dans vos applications et la création d'applications au-dessus des bases de données Streamlit. livre couvre tout, de la configuration de l'environnement de développement et de la création des applications de base de Streamlit à des sujets plus complexes tels que le déploiement d'applications Streamlit avec Streamlit Community Cloud, Hugging Face Spaces et Heroku, ainsi que la décoration d'applications avec des thèmes et des composants. Introduction Streamlit Streamlit est une bibliothèque puissante sur Python qui vous permet de créer des visualisations interactives et de déployer des modèles d'apprentissage automatique rapidement et facilement. Dans ce chapitre, nous allons discuter des bases de la configuration de l'environnement de développement et de la création de la première application Streamlit à partir de zéro. Nous vous dirons comment télécharger, télécharger et manipuler les données, et comment utiliser les bibliothèques Python intégrées et importées pour visualiser les données.
Racionalización para la ciencia de datos: una guía fácil de usar para crear aplicaciones de datos con modelos de bosque aleatorio abrazando caras y GPT-3 Racionalización para la ciencia de datos: Una guía fácil de usar para crear aplicaciones de datos con los modelos Random Forest, Hugging Face y GPT-3 es una guía importante para los profesionales de análisis de datos y entusiastas del aprendizaje automático que desean crear aplicaciones web dinámicas con Streamlit, una biblioteca Python que permite a los usuarios crear visualizaciones interactivas y implementar modelos de aprendizaje automático de forma rápida y fácil. Esta segunda edición se ha actualizado para incluir nuevas características como la conexión de Streamlit a almacenes de datos como Snowflake, la integración de los modelos Hugging Face y OpenAI en sus aplicaciones y la creación de aplicaciones sobre bases de datos Streamlit. libro abarca desde la configuración del entorno de desarrollo y creación de aplicaciones básicas de Streamlit hasta temas más complejos, como la implementación de aplicaciones Streamlit con Streamlit Community Cloud, Hugging Face Spaces y Heroku, y la decoración de aplicaciones con temas y componentes. La introducción a Streamlit Streamlit es una biblioteca potente en Python que permite la creación de visualizaciones interactivas y la implementación rápida y fácil de modelos de aprendizaje automático. En este capítulo, analizaremos los fundamentos para configurar el entorno de desarrollo y crear la primera aplicación Streamlit desde cero. explicaremos cómo descargar, descargar y manipular datos y cómo utilizar las bibliotecas Python integradas e importadas para visualizar datos.
Racionalização para a Ciência de Dados: um guia fácil de usar para criar aplicativos de dados com modelos de floresta aleatória que abraçam rostos e GPT-3 Racionalização para a Ciência de Dados: Um guia fácil de usar para criar aplicativos de dados com os modelos Random Forest, Hugging Face e GPT-3 é um guia importante para especialistas em análise de dados e entusiastas de aprendizado de máquina que desejam criar aplicações dinâmicas da Web com o Streamlit, uma biblioteca Python que permite que os usuários criem visualizações interativas e implantem modelos de aprendizado de máquina rápido e fácil. Esta segunda edição foi atualizada para incluir novas funcionalidades, tais como a conexão do Streamlit com armazenamentos de dados, tais como Snowflake, integração dos modelos Hugging Face e OpenAI em seus aplicativos e criação de aplicativos em cima das bases de dados Streamlit. O livro abrange tudo, desde a configuração do ambiente de desenvolvimento e criação de aplicativos básicos Streamlit até temas mais complexos, como a implantação de aplicativos Streamlit com Streamlit Community Cloud, Hugging Face Spaces e Heroku, além de adornar aplicações com temas e componentes. A introdução no Streamlit Streamlit é uma poderosa biblioteca na Python que permite a criação de visualizações interativas e a implantação rápida e fácil de modelos de aprendizado de máquina. Neste capítulo, vamos analisar os fundamentos da configuração do ambiente de desenvolvimento e criação do primeiro aplicativo Streamlit do zero. Nós iremos explicar como carregar, carregar e manipular dados e como usar bibliotecas Python incorporadas e importadas para visualizar os dados.
Razionalizzazione per la scienza dei dati: manuale di facile utilizzo per la creazione di applicazioni per i dati con modelli di foresta casuale che abbracciano i volti e GPT-3 Razionalizzazione per la scienza dei dati: Una guida semplice da utilizzare per la creazione di applicazioni di dati con i modelli Random Forest, Hugging Face e GPT-3 è una guida importante per gli esperti di apprendimento automatico che desiderano creare applicazioni web dinamiche con Streamlit, una libreria Python che consente agli utenti di creare visualizzazioni interattive e implementare modelli di apprendimento automatico veloce e facile. Questa seconda edizione è stata aggiornata per includere nuove funzionalità, come la connessione di Streamlit agli archivi dati, come Snowflake, l'integrazione dei modelli Hugging Face e le applicazioni e la creazione di applicazioni sopra i database Streamlit. Il libro comprende tutto, dalla configurazione dell'ambiente di sviluppo e creazione di applicazioni di base Streamlit a temi più complessi, come l'implementazione delle applicazioni Streamlit con Streamlit Community Cloud, Hugging Face Space e Heroku, e la decorazione delle applicazioni con temi e componenti. L'introduzione a Streamlit Streamlit è una potente libreria su Python che consente di creare visualizzazioni interattive e di implementare modelli di apprendimento automatico in modo rapido e semplice. In questo capitolo esamineremo le basi di configurazione dell'ambiente di sviluppo e creazione della prima applicazione Streamlit da zero. Vi spiegheremo come caricare, caricare e manipolare i dati e come utilizzare le librerie Python incorporate e importate per visualizzare i dati.
Rationalisierung für Data Science: Ein einfach zu bedienender itfaden zum Erstellen von Datenanwendungen mit Modellen von Random Forest, Facing und GPT-3 Rationalisierung für Data Science: Der benutzerfreundliche itfaden zum Erstellen von Datenanwendungen mit Random Forest-, Hugging Face- und GPT-3-Modellen ist ein wichtiger itfaden für Datenwissenschaftler und Machine-arning-Enthusiasten, die dynamische Webanwendungen mit Streamlit erstellen möchten, einer Python-Bibliothek, mit der Benutzer interaktive Visualisierungen erstellen und Machine-arning-Modelle schnell und einfach bereitstellen können. Diese zweite Ausgabe wurde aktualisiert, um neue Funktionen wie die Anbindung von Streamlit an Data Warehouses wie Snowflake, die Integration von Hugging Face und OpenAI-Modellen in Ihre Anwendungen und die Erstellung von Anwendungen über Streamlit-Datenbanken aufzunehmen. Das Buch umfasst alles von der Anpassung der Entwicklungsumgebung und der Erstellung grundlegender Streamlit-Anwendungen bis hin zu komplexeren Themen wie der Bereitstellung von Streamlit-Anwendungen mit Streamlit Community Cloud, Hugging Face Spaces und Heroku sowie der Dekoration von Anwendungen mit Themen und Komponenten. Einführung in Streamlit Streamlit ist eine leistungsstarke Python-Bibliothek, mit der e interaktive Visualisierungen erstellen und Machine-arning-Modelle schnell und einfach bereitstellen können. In diesem Kapitel werden wir uns mit den Grundlagen der Anpassung der Entwicklungsumgebung und der Erstellung der ersten Streamlit-Anwendung von Grund auf befassen. Wir zeigen Ihnen, wie e Daten herunterladen, herunterladen und manipulieren und wie e die eingebetteten und importierten Python-Bibliotheken zur Datenvisualisierung verwenden.
''
Veri Bilimi için Rasyonalizasyon: Rastgele Orman, Yüz Kucaklama ve GPT-3 Modelleri ile Veri Uygulamaları Oluşturmak için Kullanımı Kolay Bir Kılavuz Veri Bilimi için Rasyonalizasyon: Random Forest, Hugging Face ve GPT-3 modellerini kullanarak veri uygulamaları oluşturmak için kullanımı kolay bir kılavuz, kullanıcıların etkileşimli görselleştirmeler oluşturmasına ve makine öğrenimi modellerini hızlı ve kolay bir şekilde dağıtmasına olanak tanıyan bir Python kütüphanesi olan Streamlit'i kullanarak dinamik web uygulamaları oluşturmak isteyen veri bilimcileri ve makine öğrenimi meraklıları için önemli bir kılavuzdur. Bu ikinci sürüm, Streamlit'i Snowflake gibi veri depolarına bağlamak, Hugging Face ve OpenAI modellerini uygulamalarınıza entegre etmek ve Streamlit veritabanlarının üstünde uygulamalar oluşturmak gibi yeni özellikler içerecek şekilde güncellendi. Kitap, bir geliştirme ortamı oluşturmaktan ve temel Streamit uygulamalarını oluşturmaktan, Streamlit uygulamalarını Streamit Community Cloud ile dağıtmak, Face Spaces ve Heroku'ya sarılmak ve uygulamaları temalar ve bileşenlerle dekore etmek gibi daha karmaşık konulara kadar her şeyi kapsar. Streamlit'e Giriş Streamlit, etkileşimli görselleştirmeler oluşturmanıza ve makine öğrenme modellerini hızlı ve kolay bir şekilde dağıtmanıza olanak tanıyan güçlü bir Python kütüphanesidir. Bu bölümde, bir geliştirme ortamı oluşturmanın ve ilk Streamlit uygulamasını sıfırdan oluşturmanın temellerine bakacağız. Verileri nasıl yükleyeceğinizi, yükleyeceğinizi ve işleyeceğinizi, ayrıca verileri görselleştirmek için yerleşik ve içe aktarılmış Python kitaplıklarını nasıl kullanacağınızı göstereceğiz.
ترشيد علوم البيانات: دليل سهل الاستخدام لبناء تطبيقات البيانات مع الغابات العشوائية، وعناق الوجه، وترشيد نماذج GPT-3 لعلوم البيانات: يعد دليل سهل الاستخدام لبناء تطبيقات البيانات باستخدام نماذج Random Forest و Hugging Face و GPT-3 دليلًا مهمًا لعلماء البيانات وعشاق التعلم الآلي الذين يرغبون في بناء تطبيقات ويب ديناميكية باستخدام Streamlit، وهي مكتبة Python تتيح للمستخدمين إنشاء تصورات تفاعلية ونشر نماذج التعلم الآلة بسرعة وسهولة. تم تحديث هذا الإصدار الثاني ليشمل ميزات جديدة مثل ربط Streamlit بمخازن البيانات مثل Snowflake، ودمج طرازات Hugging Face و OpenAI في تطبيقاتك، وبناء تطبيقات فوق قواعد بيانات Streamlit. يغطي الكتاب كل شيء بدءًا من إنشاء بيئة تطوير وبناء تطبيقات Streamlit الأساسية إلى موضوعات أكثر تعقيدًا مثل نشر تطبيقات Streamlit مع Streamlit Community Cloud و Hugging Face Spaces و Heroku وتزيين التطبيقات بالموضوعات والمكونات. مقدمة إلى Streamlit Streamlit هي مكتبة Python قوية تتيح لك إنشاء تصورات تفاعلية ونشر نماذج التعلم الآلي بسرعة وسهولة. في هذا الفصل، سننظر في أساسيات إنشاء بيئة تنموية وإنشاء أول تطبيق Streamlit من الصفر. سنظهر لك كيفية تحميل البيانات وتحميلها ومعالجتها، بالإضافة إلى كيفية استخدام مكتبات بايثون المدمجة والمستوردة لتصور البيانات.

You may also be interested in:

Streamlit for Data Scienc
Streamlit Essentials From basics to advanced data app development
Streamlit Essentials From basics to advanced data app development
Principles of Computer Scienc
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Interpretation: Ways of Thinking about the Sciences and the Arts (Pitt Konstanz Phil Hist Scienc)
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Essential Data Analytics, Data Science, and AI A Practical Guide for a Data-Driven World
The Data Mindset Playbook: A book about data for people who don|t want to read about data
Data Stewardship An Actionable Guide to Effective Data Management and Data Governance Second Edition
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale
Data Virtualization in the Cloud Era Data Lakes and Data Federation At Scale
The Big Data Agenda Data Ethics and Critical Data Studies
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Ultimate Pandas for Data Manipulation and Visualization Efficiently Process and Visualize Data with Python|s Most Popular Data Manipulation Library
Ultimate Pandas for Data Manipulation and Visualization Efficiently Process and Visualize Data with Python|s Most Popular Data Manipulation Library
Ultimate Pandas for Data Manipulation and Visualization: Efficiently Process and Visualize Data with Python|s Most Popular Data Manipulation Library (English Edition)
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter