BOOKS - Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Ap...
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications - Shubham Mahajan, Pethuru Raj, Amit Kant Pandit 2025 PDF Wiley-Scrivener BOOKS
1 TON

Views
87678

Telegram
 
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications
Author: Shubham Mahajan, Pethuru Raj, Amit Kant Pandit
Year: 2025
Format: PDF
File size: 46.6 MB
Language: ENG



Pay with Telegram STARS
Deep Reinforcement Learning and Its Industrial Use Cases AI for Real-World Applications Introduction The world we live in today is constantly evolving, and technology plays a significant role in shaping our future. One of the most exciting and rapidly advancing areas of technology is deep reinforcement learning, which has the potential to revolutionize various industries and transform the way we live and work. This book delves into the intricacies of deep reinforcement learning and its industrial use cases, providing readers with a comprehensive understanding of this cutting-edge technology and its applications in real-world scenarios. Chapter 1: The Evolution of Technology To appreciate the significance of deep reinforcement learning, it's essential to understand the technological process of developing modern knowledge. From the invention of fire to the internet, technology has been a driving force behind human progress. Each innovation has built upon previous ones, leading to an exponential increase in knowledge and capabilities. The development of artificial intelligence (AI) represents the latest leap forward, enabling machines to learn from data and make decisions autonomously. Deep reinforcement learning is a subset of AI that utilizes neural networks to optimize decision-making processes.
Глубокое обучение и примеры промышленного использования искусственного интеллекта для реальных приложений Введение Мир, в котором мы живем сегодня, постоянно развивается, и технологии играют важную роль в формировании нашего будущего. Одной из наиболее интересных и быстро развивающихся областей технологий является глубокое обучение с подкреплением, которое может революционизировать различные отрасли и изменить наш образ жизни и работы. Эта книга углубляется в тонкости глубокого обучения и его сценарии промышленного использования, предоставляя читателям исчерпывающее понимание этой передовой технологии и ее применения в реальных сценариях. Глава 1: Эволюция технологий Чтобы оценить значение глубокого обучения, важно понимать технологический процесс развития современных знаний. От изобретения огня до Интернета технологии были движущей силой человеческого прогресса. Каждая инновация опирается на предыдущие, что приводит к экспоненциальному увеличению знаний и возможностей. Развитие искусственного интеллекта (ИИ) представляет собой последний скачок вперед, позволяющий машинам учиться на данных и принимать решения автономно. Глубокое обучение с подкреплением - это подмножество ИИ, которое использует нейронные сети для оптимизации процессов принятия решений.
''

You may also be interested in:

Transfer Learning for Multiagent Reinforcement Learning Systems
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Reinforcement Learning with TensorFlow: A beginner|s guide to designing self-learning systems with TensorFlow and OpenAI Gym
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Reinforcement Learning An Introduction, 2 edition
Control Systems and Reinforcement Learning
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Reinforcement Learning Theory and Python Implementation
Multi-Agent Machine Learning A Reinforcement Approach
Human-Robot Interaction Control Using Reinforcement Learning
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Multi-Agent Reinforcement Learning Foundations and Modern Approaches
Cognitive Analytics and Reinforcement Learning Theories, Techniques and Applications
The Art of Reinforcement Learning Fundamentals, Mathematics, and Implementations with Python
The Art of Reinforcement Learning Fundamentals, Mathematics, and Implementations with Python
The Art of Reinforcement Learning: Fundamentals, Mathematics, and Implementations with Python
Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
Reinforcement Learning for Finance A Python-Based Introduction (Final Release)
Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions
Applied Reinforcement Learning with Python: With OpenAI Gym, Tensorflow, and Keras
Reinforcement Learning for Finance A Python-Based Introduction (Final Release)
Reinforcement Learning for Finance A Python-Based Introduction (Early Release)
Reinforcement Learning for Finance A Python-Based Introduction (Early Release)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step