BOOKS - Data Analytics and Machine Learning for Integrated Corridor Management
Data Analytics and Machine Learning for Integrated Corridor Management - Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn 2025 PDF | EPUB CRC Press BOOKS
1 TON

Views
70936

Telegram
 
Data Analytics and Machine Learning for Integrated Corridor Management
Author: Yashaswi Karnati, Dhruv Mahajan, Tania Banerjee, Rahul Sengupta, Clay Packard, Ryan Casburn
Year: 2025
Format: PDF | EPUB
File size: 33.4 MB
Language: ENG



Pay with Telegram STARS
The book "Data Analytics and Machine Learning for Integrated Corridor Management" explores the potential of data analytics and machine learning in integrated corridor management, highlighting the importance of these technologies in optimizing transportation infrastructure planning, design, operation, and maintenance. The book provides insights into how data analytics and machine learning can be applied to various transportation modes, including roads, railways, airports, seaports, and public transportation systems. It covers topics such as data-driven decision-making, predictive modeling, and intelligent transportation systems, and offers practical examples of successful applications of these technologies in different regions of the world. The book begins by discussing the evolution of technology and its impact on society, emphasizing the need for a personal paradigm shift in understanding the technological process of developing modern knowledge. This shift involves recognizing the interconnectedness of technology and society and the imperative of adapting to new technologies to ensure human survival and the unification of people in a warring state. The author argues that this shift is necessary to overcome the challenges posed by the rapid pace of technological change and the increasing complexity of modern life. The book then delves into the specifics of data analytics and machine learning, explaining their potential to transform integrated corridor management. It explores the use of data analytics in traffic flow prediction, route optimization, and traveler information systems, as well as the application of machine learning algorithms to improve traffic management and reduce congestion. The author highlights the importance of integrating data analytics and machine learning into existing transportation infrastructure and operations, emphasizing the need for a comprehensive approach to managing corridors that considers all modes of transportation.
Книга «Data Analytics and Machine arning for Integrated Corridor Management» исследует потенциал аналитики данных и машинного обучения в интегрированном управлении коридорами, подчеркивая важность этих технологий в оптимизации планирования, проектирования, эксплуатации и обслуживания транспортной инфраструктуры. Книга дает представление о том, как аналитика данных и машинное обучение могут быть применены к различным видам транспорта, включая автомобильные дороги, железные дороги, аэропорты, морские порты и системы общественного транспорта. Он охватывает такие темы, как принятие решений на основе данных, прогнозное моделирование и интеллектуальные транспортные системы, и предлагает практические примеры успешного применения этих технологий в разных регионах мира. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчёркивая необходимость личностной смены парадигмы в понимании технологического процесса развития современных знаний. Этот сдвиг предполагает признание взаимосвязанности технологий и общества и императива адаптации к новым технологиям для обеспечения выживания человека и объединения людей в воюющем государстве. Автор утверждает, что этот сдвиг необходим для преодоления проблем, связанных с быстрыми темпами технологических изменений и возрастающей сложностью современной жизни. Затем книга углубляется в особенности аналитики данных и машинного обучения, объясняя их потенциал для трансформации интегрированного управления коридорами. В нем исследуется использование аналитики данных в прогнозировании потоков трафика, оптимизации маршрутов и информационных системах путешественников, а также применение алгоритмов машинного обучения для улучшения управления трафиком и уменьшения заторов. Автор подчеркивает важность интеграции аналитики данных и машинного обучения в существующую транспортную инфраструктуру и операции, подчеркивая необходимость комплексного подхода к управлению коридорами, учитывающего все виды транспорта.
''

You may also be interested in:

Introducing Data Science Big data, machine learning, and more, using Python tools
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
Agricultural Informatics Automation Using the IoT and Machine Learning (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Data Science Essentials with R Learn with focus on data manipulation, visualization, and machine learning
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Training Data for Machine Learning Human Supervision from Annotation to Data Science (Final)
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, Early Release
Machine Learning Approaches in Financial Analytics
Machine Learning Approaches in Financial Analytics
Just Enough R! An Interactive Approach to Machine Learning and Analytics
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected data Driving Business Outcomes with Connected Data (Final)
Machine Learning Approaches in Cyber Security Analytics
Graph-Powered Analytics and Machine Learning with TigerGraph
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Machine Learning and Analytics in Healthcare Systems Principles and Applications
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Predictive Safety Analytics Reducing Risk through Modeling and Machine Learning
Artificial Intelligence and Machine Learning with R Applications in the Field of Business Analytics
Machine Learning Toolbox for Social Scientists Applied Predictive Analytics with R
Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Video Data Analytics for Smart City Applications: Methods and Trends (IoT and Big Data Analytics)
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Advanced Analytics with Spark Patterns for Learning from Data at Scale
Learning Spark Lightning-Fast Data Analytics, Second Edition
Advanced Deep Learning Applications in Big Data Analytics
New Age Analytics Transforming the Internet through Machine Learning, IoT, and Trust Modeling
Machine Learning for Business Analytics: Concepts, Techniques and Applications with JMP Pro
Machine Learning with Spark and Python Essential Techniques for Predictive Analytics Second Edition