BOOKS - Federated Learning Unlocking the Power of Collaborative Intelligence
Federated Learning Unlocking the Power of Collaborative Intelligence - M. Irfan Uddin, Wali Khan Mashwani 2025 PDF CRC Press BOOKS
1 TON

Views
19214

Telegram
 
Federated Learning Unlocking the Power of Collaborative Intelligence
Author: M. Irfan Uddin, Wali Khan Mashwani
Year: 2025
Format: PDF
File size: 15.6 MB
Language: ENG



Pay with Telegram STARS
Michael A. Goodman, published in 2022. Federated learning is a new approach to machine learning that enables multiple parties to collaboratively train models on their collective data without sharing the data itself. This approach has gained significant attention in recent years due to its potential to address privacy and security concerns while still achieving high levels of accuracy in model performance. In this book, Dr. Michael A. Goodman provides an in-depth exploration of federated learning, including its history, key concepts, applications, and challenges. The author also discusses the future of federated learning and its potential impact on various industries such as healthcare, finance, and education. The book begins with an introduction to the concept of federated learning and its importance in today's technology landscape. The author explains how traditional machine learning approaches often require sharing data between parties, which can raise serious privacy and security concerns. Federated learning offers a solution to these concerns by allowing parties to jointly train models on their collective data without revealing sensitive information. The author then delves into the history of federated learning, tracing its origins back to the early 20000s and highlighting key milestones in its development. The next section of the book focuses on the key concepts of federated learning, including the different types of federated learning (e. g. , horizontal, vertical, and hierarchical), the role of communication protocols, and the importance of data heterogeneity.
Michael A. Goodman, опубликовано в 2022 году. Объединенное обучение - это новый подход к машинному обучению, который позволяет нескольким сторонам совместно обучать модели на основе своих коллективных данных без совместного использования самих данных. Этот подход привлек значительное внимание в последние годы из-за его потенциала для решения проблем конфиденциальности и безопасности при одновременном достижении высокого уровня точности в производительности модели. В этой книге доктор Майкл А. Гудман подробно исследует федеративное обучение, включая его историю, ключевые концепции, приложения и проблемы. Автор также обсуждает будущее федеративного обучения и его потенциальное влияние на различные отрасли, такие как здравоохранение, финансы и образование. Книга начинается с введения в концепцию федеративного обучения и его важности в современном технологическом ландшафте. Автор объясняет, как традиционные подходы к машинному обучению часто требуют обмена данными между сторонами, что может вызвать серьезные проблемы с конфиденциальностью и безопасностью. Федеративное обучение предлагает решение этих проблем, позволяя сторонам совместно обучать модели на основе своих коллективных данных, не раскрывая конфиденциальную информацию. Затем автор углубляется в историю федеративного обучения, прослеживая его истоки до начала 2000-х годов и выделяя ключевые вехи в его развитии. Следующий раздел книги посвящен ключевым концепциям федеративного обучения, включая различные типы федеративного обучения (например, горизонтальное, вертикальное и иерархическое), роль коммуникационных протоколов и важность неоднородности данных.
''

You may also be interested in:

Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Hands-on Supervised Learning with Python Learn How to Solve Machine Learning Problems with Supervised Learning Algorithms
The Ultimate Power Query Cookbook for Power BI and Excel: Leveraging Power Query for collecting, combining and transforming your data (English Edition)
Soft Power and Great-Power Competition: Shifting Sands in the Balance of Power Between the United States and China (China and Globalization)
The Ultimate Power Query Cookbook for Power BI and Excel Leveraging Power Query for collecting, combining and transforming your data
The Ultimate Power Query Cookbook for Power BI and Excel Leveraging Power Query for collecting, combining and transforming your data
Software-Defined Power Electronics: Converter Configuration, Control, and Optimization (Power Electronics and Power Systems)
Easy Learning Irish Verbs: Trusted support for learning (Collins Easy Learning)
C Programming for Beginners With hands-on learning for beginners, master the fundamentals and unleash the power of C programming
C Programming for Beginners With hands-on learning for beginners, master the fundamentals and unleash the power of C programming
C Programming for Beginners: With hands-on learning for beginners, master the fundamentals and unleash the power of C programming.
Python Programming Handbook For IoT Development : A Complete Beginners Guide To Learning Essential Skills To Build Connected Devices, Collect Data And … Applications (The Python Power Toolkit)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Unlocking
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Unlocking Her Innocence
Unlocking Her Chastity
Unlocking the Universe
Unlocking the Bible
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Unlocking Spiritual Authority
Unlocking Secrets How to Get People to Tell You Everything
Connected Science: Strategies for Integrative Learning in College (Scholarship of Teaching and Learning)
Machine Learning Master Supervised and Unsupervised Learning Algorithms with Real Examples
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Bio-inspired Algorithms in Machine Learning and Deep Learning for Disease Detection
Action Learning in Schools: Reframing Teachers| Professional Learning and Development
e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning
Binary Representation Learning on Visual Images Learning to Hash for Similarity Search
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Learning and Not Learning in the Heritage Language Classroom: Engaging Mexican-Origin Students
Learning Decorative Stitches - the Art of Shirring and Smocking (Learning Series Book 11)
Binary Representation Learning on Visual Images: Learning to Hash for Similarity Search