
BOOKS - Federated Learning Unlocking the Power of Collaborative Intelligence

Federated Learning Unlocking the Power of Collaborative Intelligence
Author: M. Irfan Uddin, Wali Khan Mashwani
Year: 2025
Format: PDF
File size: 15.6 MB
Language: ENG

Year: 2025
Format: PDF
File size: 15.6 MB
Language: ENG

Michael A. Goodman, published in 2022. Federated learning is a new approach to machine learning that enables multiple parties to collaboratively train models on their collective data without sharing the data itself. This approach has gained significant attention in recent years due to its potential to address privacy and security concerns while still achieving high levels of accuracy in model performance. In this book, Dr. Michael A. Goodman provides an in-depth exploration of federated learning, including its history, key concepts, applications, and challenges. The author also discusses the future of federated learning and its potential impact on various industries such as healthcare, finance, and education. The book begins with an introduction to the concept of federated learning and its importance in today's technology landscape. The author explains how traditional machine learning approaches often require sharing data between parties, which can raise serious privacy and security concerns. Federated learning offers a solution to these concerns by allowing parties to jointly train models on their collective data without revealing sensitive information. The author then delves into the history of federated learning, tracing its origins back to the early 20000s and highlighting key milestones in its development. The next section of the book focuses on the key concepts of federated learning, including the different types of federated learning (e. g. , horizontal, vertical, and hierarchical), the role of communication protocols, and the importance of data heterogeneity.
Michael A. Goodman, опубликовано в 2022 году. Объединенное обучение - это новый подход к машинному обучению, который позволяет нескольким сторонам совместно обучать модели на основе своих коллективных данных без совместного использования самих данных. Этот подход привлек значительное внимание в последние годы из-за его потенциала для решения проблем конфиденциальности и безопасности при одновременном достижении высокого уровня точности в производительности модели. В этой книге доктор Майкл А. Гудман подробно исследует федеративное обучение, включая его историю, ключевые концепции, приложения и проблемы. Автор также обсуждает будущее федеративного обучения и его потенциальное влияние на различные отрасли, такие как здравоохранение, финансы и образование. Книга начинается с введения в концепцию федеративного обучения и его важности в современном технологическом ландшафте. Автор объясняет, как традиционные подходы к машинному обучению часто требуют обмена данными между сторонами, что может вызвать серьезные проблемы с конфиденциальностью и безопасностью. Федеративное обучение предлагает решение этих проблем, позволяя сторонам совместно обучать модели на основе своих коллективных данных, не раскрывая конфиденциальную информацию. Затем автор углубляется в историю федеративного обучения, прослеживая его истоки до начала 2000-х годов и выделяя ключевые вехи в его развитии. Следующий раздел книги посвящен ключевым концепциям федеративного обучения, включая различные типы федеративного обучения (например, горизонтальное, вертикальное и иерархическое), роль коммуникационных протоколов и важность неоднородности данных.
''
