BOOKS - Applied Machine Learning A practical guide from Novice to Pro
Applied Machine Learning A practical guide from Novice to Pro - Chigozie Anyasor 2024 EPUB Independently published BOOKS
1 TON

Views
64277

Telegram
 
Applied Machine Learning A practical guide from Novice to Pro
Author: Chigozie Anyasor
Year: 2024
Format: EPUB
File size: 20.8 MB
Language: ENG



Pay with Telegram STARS
Applied Machine Learning A Practical Guide from Novice to Pro In today's fast-paced world, technology is advancing at an unprecedented rate, and it has become increasingly important to stay up-to-date with the latest developments in the field of machine learning. With the rise of artificial intelligence and automation, machine learning has become a crucial tool for businesses, researchers, and professionals across various industries. However, many individuals struggle to keep pace with the rapidly evolving landscape of machine learning. This book, "Applied Machine Learning: A Practical Guide from Novice to Pro," aims to bridge this gap by providing a comprehensive and practical guide to understanding and implementing machine learning techniques. The book begins with an introduction to the fundamentals of machine learning, including supervised and unsupervised learning, deep learning, and neural networks. It then delves into more advanced topics such as natural language processing, computer vision, and reinforcement learning. The author emphasizes the importance of understanding the underlying principles of machine learning and its applications in real-world scenarios. The book is divided into three parts: Part I focuses on the basics of machine learning, Part II explores advanced topics, and Part III provides case studies and projects to help readers apply their knowledge in real-world scenarios.
Прикладное машинное обучение Практическое руководство от «Новичка» до Pro В современном быстро развивающемся мире технологии развиваются с беспрецедентной скоростью, и становится все более важным оставаться в курсе последних разработок в области машинного обучения. С появлением искусственного интеллекта и автоматизации машинное обучение стало важнейшим инструментом для бизнеса, исследователей и специалистов в различных отраслях. Тем не менее, многие люди изо всех сил пытаются идти в ногу с быстро развивающимся ландшафтом машинного обучения. Эта книга «Прикладное машинное обучение: практическое руководство от новичка к профессионалу» призвана преодолеть этот пробел, предоставив всеобъемлющее и практическое руководство по пониманию и внедрению методов машинного обучения. Книга начинается с введения в основы машинного обучения, включая обучение с учителем и без учителя, глубокое обучение и нейронные сети. Затем он углубляется в более продвинутые темы, такие как обработка естественного языка, компьютерное зрение и обучение с подкреплением. Автор подчеркивает важность понимания основополагающих принципов машинного обучения и его применения в реальных сценариях. Книга разделена на три части: Часть I посвящена основам машинного обучения, Часть II исследует продвинутые темы, а Часть III предоставляет тематические исследования и проекты, чтобы помочь читателям применить свои знания в реальных сценариях.
''

You may also be interested in:

Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Mastering OpenCV with Python Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects
Python Programming The Guide For Machine Learning
Machine Learning with Python A Comprehensive Guide
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, First Edition
Machine Learning for Beginners Easy Guide Book
The Comprehensive Guide to Machine Learning Algorithms and Techniques
The Comprehensive Guide to Machine Learning Algorithms and Techniques
Machine Learning and Its Application A Quick Guide for Beginners
Machine Learning A Comprehensive Beginner|s Guide
Machine Learning A Comprehensive Beginner|s Guide
How Machines Learn An Illustrated Guide to Machine Learning
Machine Learning A Comprehensive Beginner|s Guide
Hacker|s Guide to Machine Learning with Python
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Practical Data Science with SAP Machine Learning Techniques for Enterprise Data, Early Release
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Mastering OpenCV with Python: Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects (English Edition)
Learning HTTP/2 A Practical Guide for Beginners
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
AI Advanced Machine Learning for Finance A Comprehensive Guide with Python
AI and Machine Learning for On-Device Development A Programmer|s Guide
AI Advanced Machine Learning for Finance: A Comprehensive Guide with Python
Learning Analytics Methods and Tutorials: A Practical Guide Using R
Learning Analytics Methods and Tutorials A Practical Guide Using R
Learning Devsecops A Practical Guide to Processes and Tools