BOOKS - Big Data Analytics Theory, Techniques, Platforms, and Applications
Big Data Analytics Theory, Techniques, Platforms, and Applications - Umit Demirbaga, Gagangeet Singh Aujla, Anish Jindal 2024 PDF | EPUB Springer BOOKS
1 TON

Views
39139

Telegram
 
Big Data Analytics Theory, Techniques, Platforms, and Applications
Author: Umit Demirbaga, Gagangeet Singh Aujla, Anish Jindal
Year: 2024
Format: PDF | EPUB
File size: 39.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Big Data Analytics Theory Techniques Platforms and Applications' is a comprehensive guide that provides insights into the latest trends, techniques, and applications of big data analytics. The book covers the fundamental concepts, theories, and methodologies of big data analytics, including data mining, machine learning, and data visualization. It also explores the current state-of-the-art platforms and tools used in big data analytics, such as Hadoop, Spark, and NoSQL databases. Additionally, the book delves into real-world applications of big data analytics in various industries, including healthcare, finance, and retail. The book begins by discussing the evolution of technology and its impact on society, highlighting the need to develop a personal paradigm for understanding the technological process of developing modern knowledge. This paradigm is essential for survival in a warring world, where the ability to adapt and evolve is crucial. The author emphasizes the importance of studying and understanding the process of technology evolution to stay ahead of the curve and remain relevant in the ever-changing landscape of big data analytics. The book then delves into the fundamentals of big data analytics, explaining the concept of big data and its significance in today's data-driven world. It covers the different types of big data, including structured, semi-structured, and unstructured data, and their unique characteristics and challenges. The author also discusses the role of data mining and machine learning in big data analytics, providing insights into the latest techniques and methodologies used in these fields.
«Платформы и приложения для теории аналитики больших данных» - это всеобъемлющее руководство, в котором представлены последние тенденции, методы и приложения для аналитики больших данных. Книга охватывает фундаментальные концепции, теории и методологии аналитики больших данных, включая интеллектуальный анализ данных, машинное обучение и визуализацию данных. В нем также рассматриваются современные платформы и инструменты, используемые в аналитике больших данных, такие как базы данных Hadoop, Spark и NoSQL. Кроме того, книга углубляется в реальные приложения аналитики больших данных в различных отраслях, включая здравоохранение, финансы и розничную торговлю. Книга начинается с обсуждения эволюции технологий и их влияния на общество, подчёркивая необходимость выработки личностной парадигмы понимания технологического процесса развития современных знаний. Эта парадигма необходима для выживания в воюющем мире, где способность адаптироваться и развиваться имеет решающее значение. Автор подчеркивает важность изучения и понимания процесса эволюции технологий, чтобы оставаться на опережение и сохранять актуальность в постоянно меняющемся ландшафте аналитики больших данных. Затем книга углубляется в основы аналитики больших данных, объясняя концепцию больших данных и их значение в современном мире, управляемом данными. Она охватывает различные типы больших данных, включая структурированные, полуструктурированные и неструктурированные данные, а также их уникальные характеристики и проблемы. Автор также обсуждает роль интеллектуального анализа данных и машинного обучения в аналитике больших данных, предоставляя информацию о новейших методах и методологиях, используемых в этих областях.
''

You may also be interested in:

Augmented Analytics Enabling Analytics Transformation for Data-Informed Decisions (3rd Early Release)
Artificial Intelligence for Business Analytics: Algorithms, Platforms and Application Scenarios
Programming Skills for Data Science Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series) 1st Edition - Fiunal
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Algorithms: Big Data, Optimization Techniques, Cyber Security (De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences, 17)
Harness the Power of Big Data The IBM Big Data Platform
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Applications of Emerging Technologies and AI ML Algorithms: International Conference on Data Analytics in Public Procurement and Supply Chain (ICDAPS2022) (Asset Analytics)
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Data Analytics and AI (Data Analytics Applications)
Big Data, Data Mining and Data Science Algorithms, Infrastructures, Management and Security
Data Pipelines Pocket Reference Moving and Processing Data for Analytics (Final)
Data Analytics for Absolute Beginners A Deconstructed Guide to Data Literacy, Second Edition
IBM Cloud Pak for Data: An enterprise platform to operationalize data, analytics, and AI
Real-Time Data Analytics for Large Scale Sensor Data Volume Six
Designing Cloud Data Platforms
Multi-dimensional Urban Sensing Using Crowdsensing Data (Data Analytics)
Agile Data Science Building Data Analytics Applications with Hadoop
Agile Data Science 2.0 Building Full-Stack Data Analytics Applications with Spark
Data Analytics for Pandemics A COVID-19 Case Study (Intelligent Signal Processing and Data Analysis)
Hands on Azure Data Studio Microsoft|s Open Platform for Data Engineering and Analytics
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Data Just Right Introduction to Large-Scale Data & Analytics
Data Analytics for Organisational Development: Unleashing the Potential of Your Data
The Big Data Agenda Data Ethics and Critical Data Studies
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Proceedings of Data Analytics and Management: ICDAM 2021, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies, 90)
Qlik Sense: Advanced Data Visualization for Your Organization: Create smart data visualizations and predictive analytics solutions
Data Science and Data Analytics Opportunities and Challenges
Data Analytics with Google Cloud Platform Build Real Time Data Analytics on Google Cloud Platform
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Practical Data Analytics for BFSI Leveraging Data Science for Driving Decisions in Banking, Financial Services, and Insurance Operations
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Web Analytics Blueprint: Unleashing Data Insights for Digital Success: Unlocking the Power of Data Analysis to Drive Business Growth and Optimization
Be Data Analytical: How to Use Analytics to Turn Data into Value
Data Governance Tools Evaluation Criteria, Big Data Governance, and Alignment with Enterprise Data Management