BOOKS - Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and ...
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series) - Jesus Rogel-Salazar January 1, 2017 PDF  BOOKS
3 TON

Views
34245

Telegram
 
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Author: Jesus Rogel-Salazar
Year: January 1, 2017
Format: PDF
File size: PDF 16 MB
Language: English



Pay with Telegram STARS
Book Description: Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as Scikit-learn, Pandas, Numpy, and others. The use of Python is particularly interesting given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. Data science and analytics are discussed from the point of view of the process and results obtained, and important features of Python are also covered, including a Python primer. Regression analysis using Python, clustering techniques, classification algorithms, and dimensionality reduction techniques are explored in the second part of the book. Hierarchical clustering, decision trees, ensemble techniques, and recommendation systems are also discussed. Finally, the support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author: Dr. Jess Rogel Salazar is a lead data scientist with experience in the field, working for companies such as AKQA, IBM Data Science Studio, Dow Jones, and others.
Data Science and Analytics с Python предназначен для практиков в области науки о данных и аналитики данных как в академической, так и в деловой среде. Цель состоит в том, чтобы представить читателю основные концепции, используемые в науке о данных, используя инструменты, разработанные на Python, такие как Scikit-learn, Pandas, Numpy и другие. Использование Python особенно интересно, учитывая его недавнюю популярность в сообществе data science. Книгой могут пользоваться как матерые программисты, так и новички. Книга организована таким образом, что отдельные главы достаточно независимы друг от друга, чтобы читателю было удобно использовать содержание в качестве справочного материала. Наука о данных и аналитика обсуждаются с точки зрения процесса и полученных результатов, также освещаются важные особенности Python, включая Python-праймер. Регрессионный анализ с использованием Python, методы кластеризации, алгоритмы классификации и методы уменьшения размерности исследуются во второй части книги. Также обсуждаются иерархическая кластеризация, деревья решений, методы ансамбля и системы рекомендаций. Наконец, алгоритм машины опорных векторов и трюк Kernel обсуждаются в последней части книги. Об авторе: Доктор Джесс Рогель Салазар - ведущий специалист по данным с опытом работы в этой области, работающий в таких компаниях, как AKQA, IBM Data Science Studio, Dow Jones и других.
Data Science and Analytics with Python est conçu pour les praticiens de la science des données et de l'analyse des données dans les milieux académiques et commerciaux. L'objectif est de présenter au lecteur les concepts de base utilisés dans la science des données, en utilisant des outils développés sur Python, tels que Scikit-learn, Pandas, Numpy et d'autres. L'utilisation de Python est particulièrement intéressante compte tenu de sa popularité récente dans la communauté de la science des données. s programmeurs et les débutants peuvent utiliser le livre. livre est organisé de telle sorte que les chapitres individuels sont suffisamment indépendants les uns des autres pour que le lecteur puisse utiliser le contenu comme référence. La science des données et l'analyse sont discutées du point de vue du processus et des résultats obtenus, et les caractéristiques importantes de Python, y compris l'amorce Python, sont également mises en évidence. L'analyse de régression à l'aide de Python, les méthodes de regroupement, les algorithmes de classification et les méthodes de réduction de la dimension sont étudiés dans la deuxième partie du livre. regroupement hiérarchique, les arbres de décision, les méthodes d'ensemble et les systèmes de recommandations sont également discutés. Enfin, l'algorithme de la machine de vecteur de référence et le tour de Kernel sont discutés dans la dernière partie du livre. À propos de l'auteur : Dr Jess Rogel Salazar est un spécialiste des données de premier plan avec une expérience dans ce domaine, travaillant pour des entreprises telles que AKQA, IBM Data Science Studio, Dow Jones et d'autres.
Data Science and Analytics con Python está diseñado para profesionales en ciencia de datos y análisis de datos tanto en entornos académicos como empresariales. objetivo es presentar al lector los conceptos básicos utilizados en la ciencia de datos, utilizando herramientas desarrolladas en Python como Scikit-learn, Pandas, Numpy, entre otros. uso de Python es especialmente interesante dada su reciente popularidad en la comunidad de la ciencia de datos. libro puede ser utilizado tanto por programadores maternos como por principiantes. libro está organizado de tal manera que los capítulos individuales son lo suficientemente independientes como para que el lector pueda utilizar el contenido como material de referencia. La ciencia de los datos y el análisis se discuten en términos de proceso y resultados obtenidos, también se destacan las características importantes de Python, incluyendo Python-primer. análisis de regresión con Python, las técnicas de agrupamiento, los algoritmos de clasificación y las técnicas de reducción de dimensión se investigan en la segunda parte del libro. También se discute la agrupación jerárquica, los árboles de decisión, los métodos de conjunto y los sistemas de recomendación. Finalmente, el algoritmo de la máquina de vectores de referencia y el truco de Kernel se discuten en la última parte del libro. Sobre el autor: doctor Jess Rogel Salazar es un destacado especialista en datos con experiencia en este campo, que trabaja en empresas como AKQA, IBM Data Science Studio, Dow Jones, entre otras.
Data Science and Analytics con Python è progettato per gli esperti di scienze dei dati e gli analisti di dati sia accademici che aziendali. L'obiettivo è quello di presentare al lettore i concetti di base utilizzati nella scienza dei dati utilizzando strumenti sviluppati su Python come Scikit-learn, Pandas, Numpy e altri. L'uso di Python è particolarmente interessante data la sua recente popolarità nella comunità data science. Il libro può essere utilizzato sia dai programmatori maturi che dai principianti. Il libro è organizzato in modo che i singoli capitoli siano abbastanza indipendenti l'uno dall'altro da consentire al lettore di utilizzare il contenuto come materiale di riferimento. La scienza dei dati e l'analisi sono discussi dal punto di vista del processo e dei risultati ottenuti e evidenziano anche le caratteristiche importanti di Python, incluso il Python Primer. L'analisi di regressione con Python, i metodi di clustering, gli algoritmi di classificazione e i metodi di riduzione della dimensione vengono esaminati nella seconda parte del libro. discute anche di clustering gerarchico, alberi di soluzioni, metodi di gruppo e sistemi di raccomandazione. Infine, l'algoritmo della macchina dei vettori di riferimento e il trucco Kernel sono discussi nell'ultima parte del libro. Il Dott. Jess Rogel Salazar è un esperto di dati con esperienza in questo campo, che lavora in aziende come AKQA, IBM Data Science Studio, Dow Jones e altre.
Data Science and Analytics mit Python richtet sich an Praktiker in den Bereichen Data Science und Data Analytics sowohl im akademischen als auch im geschäftlichen Umfeld. Ziel ist es, dem ser die grundlegenden Konzepte der Datenwissenschaft mit Hilfe von in Python entwickelten Tools wie Scikit-learn, Pandas, Numpy und anderen vorzustellen. Die Verwendung von Python ist besonders interessant angesichts seiner jüngsten Popularität in der Data-Science-Community. Das Buch kann sowohl von erfahrenen Programmierern als auch von Anfängern verwendet werden. Das Buch ist so organisiert, dass die einzelnen Kapitel so unabhängig voneinander sind, dass es für den ser bequem ist, den Inhalt als Referenz zu verwenden. Datenwissenschaft und Analytik werden in Bezug auf den Prozess und die erzielten Ergebnisse diskutiert, und wichtige Merkmale von Python, einschließlich Python-Primer, werden ebenfalls hervorgehoben. Regressionsanalysen mit Python, Clustering-Methoden, Klassifikationsalgorithmen und Methoden zur Dimensionsreduktion werden im zweiten Teil des Buches untersucht. Auch hierarchische Clustering, Entscheidungsbäume, Ensemblemethoden und Empfehlungssysteme werden diskutiert. Schließlich werden der Algorithmus der Support-Vector-Maschine und der Kernel-Trick im letzten Teil des Buches diskutiert. Über den Autor: Dr. Jess Rogel Salazar ist ein führender Datenspezialist mit Erfahrung in diesem Bereich, der für Unternehmen wie AKQA, IBM Data Science Studio, Dow Jones und andere arbeitet.
''
Python ile Veri Bilimi ve Analitiği, hem akademik hem de iş ortamlarındaki veri bilimi ve veri analizi uygulayıcıları için tasarlanmıştır. Amaç, okuyucuya Scikit-learn, Pandas, Numpy ve diğerleri gibi Python'da geliştirilen araçları kullanarak veri biliminde kullanılan temel kavramları sunmaktır. Python'un kullanımı, veri bilimi topluluğundaki son popülerliği göz önüne alındığında özellikle ilginçtir. Kitap hem deneyimli programcılar hem de yeni başlayanlar tarafından kullanılabilir. Kitap, bireysel bölümlerin, okuyucunun içeriği referans materyal olarak kullanmasını kolaylaştırmak için birbirinden yeterince bağımsız olacak şekilde düzenlenmiştir. Veri bilimi ve analitiği, süreç ve elde edilen sonuçlar açısından tartışılır ve Python astarı da dahil olmak üzere Python'un önemli özellikleri de vurgulanır. Python kullanarak regresyon analizi, kümeleme yöntemleri, sınıflandırma algoritmaları ve boyutluluk azaltma yöntemleri kitabın ikinci bölümünde incelenmiştir. Hiyerarşik kümeleme, karar ağaçları, topluluk yöntemleri ve öneri sistemleri de tartışılmaktadır. Son olarak, destek vektör makinesi algoritması ve Kernel hilesi kitabın son bölümünde ele alınmıştır. Yazar hakkında: Dr. Jess Rogel Salazar, alanında deneyimli, AKQA, IBM Data Science Studio, Dow Jones ve diğerleri gibi şirketler için çalışan önde gelen bir veri bilimcisidir.
تم تصميم علوم وتحليلات البيانات مع Python لممارسي علوم البيانات وتحليلات البيانات في كل من البيئات الأكاديمية والتجارية. الهدف هو تقديم المفاهيم الأساسية المستخدمة في علم البيانات للقارئ باستخدام الأدوات التي تم تطويرها في بايثون، مثل Scikit-learn و Pandas و Numpy وغيرها. يعد استخدام Python مثيرًا للاهتمام بشكل خاص نظرًا لشعبيته الأخيرة في مجتمع علوم البيانات. يمكن استخدام الكتاب من قبل كل من المبرمجين والمبتدئين المخضرمين. يتم تنظيم الكتاب بطريقة تجعل الفصول الفردية مستقلة بما فيه الكفاية عن بعضها البعض لجعل من الملائم للقارئ استخدام المحتوى كمواد مرجعية. تتم مناقشة علم البيانات والتحليلات من حيث العملية والنتائج التي تم الحصول عليها، ويتم أيضًا تسليط الضوء على السمات المهمة لبايثون، بما في ذلك Python primer. يتم استكشاف تحليل الانحدار باستخدام Python وطرق التجميع وخوارزميات التصنيف وطرق تقليل الأبعاد في الجزء الثاني من الكتاب. كما تمت مناقشة التجميع الهرمي وأشجار القرار وطرق المجموعات ونظم التوصيات. أخيرًا، تمت مناقشة خوارزمية آلة ناقل الدعم وخدعة Kernel في الجزء الأخير من الكتاب. حول المؤلف: الدكتور جيس روجل سالازار عالم بيانات رائد لديه خبرة في هذا المجال، ويعمل في شركات مثل AKQA و IBM Data Science Studio و Dow Jones وغيرها.

You may also be interested in:

Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Data Science 2 Books in 1 Python Programming & Python for Data Science, The Ultimate Guide to Learn Machine Learning and Predictive Analytics from Scratch with Hands-On Projects
DATA SCIENCE WITH PYTHON Complete Guide To Understanding Data Analytics And Data Science With Python Programming
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python (FT Press Analytics)
Data Analytics for Absolute Beginners: Make Decisions Using Every Variable: (Introduction to Data, Data Visualization, Business Intelligence and Machine … Science, Python and Statistics for Begi
Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Advanced Data Science and Analytics with Python (Chapman and Hall CRC Data Mining and Knowledge Discovery Series)
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Advanced Data Science and Analytics with Python (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Data Science and Analytics with Python
Learn Data Analytics For Beginners Data Analyst, Deep Learning, Neural Network, Python Data Analytics
Python for Data Analytics A Beginners Guide for Learning Python Data Analytics from A-Z
Python Data Science How to Learn Step by Step Programming, Data Analytics, and Coding Essentials Tools
Marketing Analytics Optimize Your Business with Data Science in R, Python, and SQL
Football Analytics with Python and R: Learning Data Science Through the Lens of Sports
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Python Data Science An Essential Crash Course Made Accessible to Start Working With Essential Tools, Techniques and Concepts that Help you Learn Python Data Science (python for beginners Book 2)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Football Analytics with Python & R Learning Data Science Through the Lens of Sports (Final)
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
PYTHON FOR DATA ANALYTICS: Mastering Python for Comprehensive Data Analysis and Insights (2023 Guide for Beginners)
PYTHON DATA ANALYTICS: Mastering Python for Effective Data Analysis and Visualization (2024 Beginner Guide)
Python Data Science: Deep Learning Guide for Beginners with Data Science. Python Programming and Crush Course.
Python Data Science An Ultimate Guide for Beginners to Learn Fundamentals of Data Science Using Python
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Graph Data Science with Python and Neo4j Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data Science for Building Enterprise Strategies
Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype (Chapman and Hall CRC Data Science Series)
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
Python for Data Science Advanced and Effective Strategies of Using Python Data Science Theories
Python for Data Science Comprehensive Guide of Tips and Tricks using Python Data Science
Data Science Projects with Python: A case study approach to successful data science projects using Python, pandas, and scikit-learn
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows